IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5152-d1186641.html
   My bibliography  Save this article

Day-Ahead Electricity Price Probabilistic Forecasting Based on SHAP Feature Selection and LSTNet Quantile Regression

Author

Listed:
  • Huixin Liu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Xiaodong Shen

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Xisheng Tang

    (Institute of Electrical Engineer, University of Chinese Academy of Sciences, Beijing 100190, China)

  • Junyong Liu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Electricity prices are a central element of the electricity market, and accurate electricity price forecasting is critical for market participants. However, in the context of increasingly integrated economic markets, the complexity of the electricity system has increased. As a result, the number of factors required to consider in electricity price forecasting is growing. In addition, the high percentage of renewable energy penetration has increased the volatility of electricity generation, making it more challenging to predict prices accurately. In this paper, we propose a probabilistic forecasting method based on SHAP (SHapley Additive exPlanation) feature selection and LSTNet (long- and short-term time-series network) quantile regression. First, to reduce feature redundancy and overfitting, we use the SHAP method to perform feature selection in a high-dimensional input feature set, and specifically analyze the magnitude and manner in which features affect electricity prices. Second, we apply the LSTNet quantile regression model to predict the electricity value under different quantiles. Finally, the probability density function and the prediction interval of the predicted electricity prices are obtained by kernel density estimation. The case of the Danish electricity market validates the effectiveness and accuracy of our proposed method. The accuracy of the proposed method is better than that of other methods, and we assess the importance and direction of the impact of features on electricity prices.

Suggested Citation

  • Huixin Liu & Xiaodong Shen & Xisheng Tang & Junyong Liu, 2023. "Day-Ahead Electricity Price Probabilistic Forecasting Based on SHAP Feature Selection and LSTNet Quantile Regression," Energies, MDPI, vol. 16(13), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5152-:d:1186641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    2. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    3. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
    2. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    3. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    4. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
    5. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    6. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    7. Weronika Nitka & Rafał Weron, 2023. "Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 105-118.
    8. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    9. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    10. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    11. Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
    12. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    13. Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices," Energies, MDPI, vol. 16(3), pages 1-18, January.
    14. Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
    15. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    16. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    17. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
    18. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Janczura, Joanna & Wójcik, Edyta, 2022. "Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. The German and the Polish market case study," Energy Economics, Elsevier, vol. 110(C).
    20. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5152-:d:1186641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.