IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v50y2012icp821-832.html
   My bibliography  Save this item

Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
  2. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
  3. Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
  4. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
  5. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
  6. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying, 2018. "Public acceptance of household energy-saving measures in Beijing: Heterogeneous preferences and policy implications," Energy Policy, Elsevier, vol. 113(C), pages 487-499.
  7. Chao Wang & Yue‐Jun Zhang, 2020. "Does environmental regulation policy help improve green production performance? Evidence from China's industry," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(2), pages 937-951, March.
  8. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Temporal and Spatial Variations in Provincial CO 2 Emissions in China from 2005 to 2015 and Assessment of a Reduction Plan," Energies, MDPI, vol. 8(5), pages 1-23, May.
  9. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
  10. Muhammad Usman & Kiran Rasheed & Faiq Mahmood & Ahsan Riaz & Mohsin Bashir, 2023. "Impact of Financial Development and Economic Growth on Energy Consumption in Developing Countries of Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 512-523, May.
  11. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
  12. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  13. Zhao, Xiaoli & Yin, Haitao & Zhao, Yue, 2015. "Impact of environmental regulations on the efficiency and CO2 emissions of power plants in China," Applied Energy, Elsevier, vol. 149(C), pages 238-247.
  14. Lebunu Hewage Udara Willhelm Abeydeera & Jayantha Wadu Mesthrige & Tharushi Imalka Samarasinghalage, 2019. "Global Research on Carbon Emissions: A Scientometric Review," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
  15. Wu, Jianxin & Xu, Hui & Tang, Kai, 2021. "Industrial agglomeration, CO2 emissions and regional development programs: A decomposition analysis based on 286 Chinese cities," Energy, Elsevier, vol. 225(C).
  16. Jayasooriya, Sujith, 2021. "Impact of Agricultural Factors on Carbon Footprints for GHG Emission Policies in Asia," MPRA Paper 109790, University Library of Munich, Germany.
  17. Jianguo Zhou & Baoling Jin & Shijuan Du & Ping Zhang, 2018. "Scenario Analysis of Carbon Emissions of Beijing-Tianjin-Hebei," Energies, MDPI, vol. 11(6), pages 1-17, June.
  18. Mohamad Taghvaee, Vahid & Hajiani, Parviz, 2015. "Environment, Energy, and Environmental Productivity of Energy: A Decomposition Analysis in China and the US," MPRA Paper 70057, University Library of Munich, Germany.
  19. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & Mima, Silvana & van Vuuren, Detlef P. & Worrell, Ernst, 2019. "The scope for better industry representation in long-term energy models: Modeling the cement industry," Applied Energy, Elsevier, vol. 240(C), pages 964-985.
  20. Shen, Chong & Zhang, Maoyong & Li, Xianting, 2017. "Experimental investigation on the thermal performance of cooling pipes embedded in a graphitization furnace," Energy, Elsevier, vol. 121(C), pages 55-65.
  21. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
  22. Lin, Boqiang & Zhang, Zihan, 2016. "Carbon emissions in China׳s cement industry: A sector and policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1387-1394.
  23. Lin, Boqiang & Moubarak, Mohamed, 2014. "Estimation of energy saving potential in China's paper industry," Energy, Elsevier, vol. 65(C), pages 182-189.
  24. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
  25. Yue Yuan & Sunhee Suk, 2023. "Decomposition Analysis and Trend Prediction of Energy-Consumption CO 2 Emissions in China’s Yangtze River Delta Region," Energies, MDPI, vol. 16(11), pages 1-18, June.
  26. Tan, Xianchun & Dong, Lele & Chen, Dexue & Gu, Baihe & Zeng, Yuan, 2016. "China’s regional CO2 emissions reduction potential: A study of Chongqing city," Applied Energy, Elsevier, vol. 162(C), pages 1345-1354.
  27. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
  28. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "The Efficiency of Long-Term Forecasting Model on Final Energy Consumption in Thailand’s Petroleum Industries Sector: Enriching the LT-ARIMAXS Model under a Sustainability Policy," Energies, MDPI, vol. 11(8), pages 1-18, August.
  29. Zihao Guo & Hailong Wang & Song Sun & Shuai Feng & Libin Shu & Chao Tang, 2023. "Improvement Mechanism of the Mechanical Properties and Pore Structure of Rubber Lightweight Aggregate Concrete with S95 Slag," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
  30. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
  31. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  32. Li, Jia & Tharakan, Pradeep & Macdonald, Douglas & Liang, Xi, 2013. "Technological, economic and financial prospects of carbon dioxide capture in the cement industry," Energy Policy, Elsevier, vol. 61(C), pages 1377-1387.
  33. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
  34. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
  35. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
  36. Cheng Huang & Yang Qu & Lingfang Huang & Xing Meng & Yulong Chen & Ping Pan, 2022. "Quantifying the Impact of Urban Form and Socio-Economic Development on China’s Carbon Emissions," IJERPH, MDPI, vol. 19(5), pages 1-14, March.
  37. Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
  38. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
  39. Xiangzhao FENG & Oleg LUGOVOY & Sheng YAN & Hu QIN, 2016. "Co-Benefits of CO2 and NOx Emission Control in China’s Cement Industry," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-20, December.
  40. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
  41. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "A Relational Analysis Model of the Causal Factors Influencing CO 2 in Thailand’s Industrial Sector under a Sustainability Policy Adapting the VARIMAX-ECM Model," Energies, MDPI, vol. 11(7), pages 1-16, July.
  42. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
  43. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
  44. Changsheng Li & Lei Zhu & Tobias Fleiter, 2014. "Energy Efficiency Potentials in the Chlor-Alkali Sector — A Case Study of Shandong Province in China," Energy & Environment, , vol. 25(3-4), pages 661-686, April.
  45. Branger, Frédéric & Quirion, Philippe, 2015. "Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis," Energy Economics, Elsevier, vol. 47(C), pages 189-205.
  46. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
  47. Jiang, Lei & He, Shixiong & Tian, Xi & Zhang, Bo & Zhou, Haifeng, 2020. "Energy use embodied in international trade of 39 countries: Spatial transfer patterns and driving factors," Energy, Elsevier, vol. 195(C).
  48. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
  49. Tan, Feifei & Lu, Zhaohua, 2015. "Current status and future choices of regional sectors-energy-related CO2 emissions: The third economic growth pole of China," Applied Energy, Elsevier, vol. 159(C), pages 237-251.
  50. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
  51. Lin, Boqiang & Xu, Mengmeng, 2019. "Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: A case of China’s metallurgical industry," Energy, Elsevier, vol. 189(C).
  52. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
  53. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
  54. Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
  55. Gozgor, Giray & Can, Muhlis, 2016. "Does Export Product Quality Matter for CO2 Emissions? Evidence from China," MPRA Paper 71873, University Library of Munich, Germany.
  56. Zhang, Jingxiao & Jin, Weixing & Yang, Guo-liang & Li, Hui & Ke, Yongjian & Philbin, Simon Patrick, 2021. "Optimizing regional allocation of CO2 emissions considering output under overall efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
  57. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
  58. Li Huang & Scott Kelly & Xuan Lu & Kangjuan Lv & Xunpeng Shi & Damien Giurco, 2019. "Carbon Communities and Hotspots for Carbon Emissions Reduction in China," Sustainability, MDPI, vol. 11(19), pages 1-29, October.
  59. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
  60. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
  61. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
  62. Li, Shupeng & Niu, Liping & Yue, Qiang & Zhang, Tingan, 2022. "Trajectory, driving forces, and mitigation potential of energy-related greenhouse gas (GHG) emissions in China's primary aluminum industry," Energy, Elsevier, vol. 239(PB).
  63. Lin, Boqiang & Moubarak, Mohamed, 2014. "Mitigation potential of carbon dioxide emissions in the Chinese textile industry," Applied Energy, Elsevier, vol. 113(C), pages 781-787.
  64. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
  65. Ning Zhang & Weijie Zhang, 2020. "Can sustainable operations achieve economic benefit and energy saving for manufacturing industries in China?," Annals of Operations Research, Springer, vol. 290(1), pages 145-168, July.
  66. Taeyoung Jin & Bongseok Choi, 2020. "Sectoral Decomposition of Korea’s Energy Consumption by Global Value Chain Dimensions," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
  67. Tao Du & Jian Wang & Heming Wang & Xin Tian & Qiang Yue & Hiroki Tanikawa, 2020. "CO2 emissions from the Chinese cement sector: Analysis from both the supply and demand sides," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 923-934, August.
  68. Ahmed, Khalid & Bhattacharya, Mita & Qazi, Ahmer Qasim & Long, Wei, 2016. "Energy consumption in China and underlying factors in a changing landscape: Empirical evidence since the reform period," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 224-234.
  69. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
  70. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
  71. Chunlei Zhou & Donghai Xuan & Yuhan Miao & Xiaohu Luo & Wensi Liu & Yihong Zhang, 2023. "Accounting CO 2 Emissions of the Cement Industry: Based on an Electricity–Carbon Coupling Analysis," Energies, MDPI, vol. 16(11), pages 1-13, May.
  72. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
  73. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
  74. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
  75. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
  76. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
  77. Hasan Volkan Oral & Hasan Saygin, 2019. "Simulating the future energy consumption and greenhouse gas emissions of Turkish cement industry up to 2030 in a global context," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1461-1482, December.
  78. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
  79. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
  80. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
  81. Xu, Jin-Hua & Fleiter, Tobias & Fan, Ying & Eichhammer, Wolfgang, 2014. "CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050," Applied Energy, Elsevier, vol. 130(C), pages 592-602.
  82. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
  83. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
  84. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
  85. Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
  86. Huang, He & Hong, Jingke & Wang, Xianzhu & Chang-Richards, Alice & Zhang, Jingxiao & Qiao, Bei, 2022. "A spatiotemporal analysis of the driving forces behind the energy interactions of the Chinese economy: Evidence from static and dynamic perspectives," Energy, Elsevier, vol. 239(PB).
  87. Xuesong Zhan & Chaofeng Shao & Rong He & Rongguang Shi, 2021. "Evolution and Efficiency Assessment of Pesticide and Fertiliser Inputs to Cultivated Land in China," IJERPH, MDPI, vol. 18(7), pages 1-21, April.
  88. Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.
  89. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
  90. Yang, Yi & Yuan, Zhuqing & Yang, Shengnan, 2022. "Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  91. Zhe Wang & Lin Zhao & Guozhu Mao & Ben Wu, 2015. "Factor Decomposition Analysis of Energy-Related CO 2 Emissions in Tianjin, China," Sustainability, MDPI, vol. 7(8), pages 1-16, July.
  92. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.