IDEAS home Printed from https://ideas.repec.org/p/ags/feemcl/184453.html
   My bibliography  Save this paper

Reaping the Carbon Rent: Abatement and Overallocation Profits in the European Cement Industry, Insights from an LMDI Decomposition Analysis

Author

Listed:
  • Branger, Frédéric
  • Quirion, Philippe

Abstract

We analyse variations of carbon emissions in the European cement industry from 1990 to 2011, at the European level (EU 27), and at the national level for six major producers (Germany, France, Spain, United Kingdom, Italy and Poland). We apply a Log-Mean Divisia Index (LMDI) method, crossing data from three databases: the Getting the Numbers Right (GNR) database developed by the Cement Sustainability Initiative, the European Union Transaction Log (EUTL), and the Eurostat International Trade database. Our decomposition method allows disentangling seven channels of emissions change: activity, clinker trade, clinker share, alternative fuels, thermal and electric energy efficiency, and electricity decarbonisation. We find that, apart from a slow trend of emissions reductions coming from technological improvements (first from a decrease in the clinker share, then from an increase in alternative fuels), most of the emissions changes can be attributed to the activity effect. Using counterfactual scenarios, we estimate that the introduction of the EU ETS brought small but positive technological abatement (2.0% ± 1.1% between 2005 and 2011). Moreover, we find that the European cement industry have ained 3.5 billion euros of “overallocation profits”, mostly due to the slowdown of production. Based on these findings, we advocate for output-based allocations, based on a stringent hybrid clinker and cement benchmarking.

Suggested Citation

  • Branger, Frédéric & Quirion, Philippe, 2014. "Reaping the Carbon Rent: Abatement and Overallocation Profits in the European Cement Industry, Insights from an LMDI Decomposition Analysis," Climate Change and Sustainable Development 184453, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemcl:184453
    DOI: 10.22004/ag.econ.184453
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/184453/files/NDL2014-077.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.184453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    3. Alexander Vasa, 2012. "Certified emissions reductions and CDM limits: revenue and distributional aspects," Climate Policy, Taylor & Francis Journals, vol. 12(6), pages 645-666, November.
    4. Philippe Quirion, 2009. "Historic versus output-based allocation of GHG tradable allowances: a comparison," Climate Policy, Taylor & Francis Journals, vol. 9(6), pages 575-592, November.
    5. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    6. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    7. Branger, Frédéric & Quirion, Philippe, 2014. "Would border carbon adjustments prevent carbon leakage and heavy industry competitiveness losses? Insights from a meta-analysis of recent economic studies," Ecological Economics, Elsevier, vol. 99(C), pages 29-39.
    8. Jean Pierre Ponssard & Neil Walker, 2008. "EU emissions trading and the cement sector: a spatial competition analysis," Climate Policy, Taylor & Francis Journals, vol. 8(5), pages 467-493, September.
    9. Meunier, Guy & Ponssard, Jean-Pierre & Quirion, Philippe, 2014. "Carbon leakage and capacity-based allocations: Is the EU right?," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 262-279.
    10. Marcel Boyer & Jean-Pierre Ponssard, 2013. "Economic analysis of the European cement industry," CIRANO Working Papers 2013s-47, CIRANO.
    11. Selim, Tarek & Salem, Ahmed, 2010. "Global Cement Industry: Competitive and Institutional Dimensions," MPRA Paper 24464, University Library of Munich, Germany.
    12. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    13. DeCanio, Stephen J, 1998. "The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments," Energy Policy, Elsevier, vol. 26(5), pages 441-454, April.
    14. Frédéric Branger & Oskar Lecuyer & Philippe Quirion, 2013. "The European Union Emissions Trading System : should we throw the flagship out with the bathwater ?," Working Papers hal-00866408, HAL.
    15. Bhattacharyya, Subhes C. & Ussanarassamee, Arjaree, 2004. "Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000," Energy Economics, Elsevier, vol. 26(5), pages 765-781, September.
    16. Claudia Kettner & Daniela Kletzan-Slamanig & Angela Köppl, 2013. "The EU Emission Trading Scheme. Sectoral Allocation Patterns and Factors Determining Emission Changes," WIFO Working Papers 444, WIFO.
    17. Jos Sijm & Karsten Neuhoff & Yihsu Chen, 2006. "CO 2 cost pass-through and windfall profits in the power sector," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 49-72, January.
    18. Frédéric Branger, Philippe Quirion, Julien Chevallier, 2017. "Carbon Leakage and Competitiveness of Cement and Steel Industries Under the EU ETS: Much Ado About Nothing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    19. Li, Jia & Tharakan, Pradeep & Macdonald, Douglas & Liang, Xi, 2013. "Technological, economic and financial prospects of carbon dioxide capture in the cement industry," Energy Policy, Elsevier, vol. 61(C), pages 1377-1387.
    20. Boemare, Catherine & Quirion, Philippe, 2002. "Implementing greenhouse gas trading in Europe: lessons from economic literature and international experiences," Ecological Economics, Elsevier, vol. 43(2-3), pages 213-230, December.
    21. Damien Demailly & Philippe Quirion, 2006. "CO 2 abatement, competitiveness and leakage in the European cement industry under the EU ETS: grandfathering versus output-based allocation," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 93-113, January.
    22. Philippe Quirion, 2010. "Competitiveness and Leakage," Chapters, in: Emilio Cerdá Tena & Xavier Labandeira (ed.), Climate Change Policies, chapter 6, Edward Elgar Publishing.
    23. Damien Demailly & Philippe Quirion, 2006. "CO2 abatement, competitiveness and leakage in the European cement industry under the EU ETS: Grandfathering vs. output-based allocation," Post-Print halshs-00639327, HAL.
    24. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    25. Ozawa, Leticia & Sheinbaum, Claudia & Martin, Nathan & Worrell, Ernst & Price, Lynn, 2002. "Energy use and CO2 emissions in Mexico's iron and steel industry," Energy, Elsevier, vol. 27(3), pages 225-239.
    26. Damien Demailly & Philippe Quirion, 2006. "CO 2 abatement, competitiveness and leakage in the European cement industry under the EU ETS: grandfathering versus output-based allocation," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 93-113, January.
    27. Alexeeva-Talebi, Victoria, 2010. "Cost pass-through in strategic oligopoly: Sectoral evidence for the EU ETS," ZEW Discussion Papers 10-056, ZEW - Leibniz Centre for European Economic Research.
    28. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    29. Jan Abrell & Anta Ndoye Faye & Georg Zachmann, 2011. "Assessing the impact of the EU ETS using firm level data," Working Papers of BETA 2011-15, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    30. Emilio Cerdá Tena & Xavier Labandeira (ed.), 2010. "Climate Change Policies," Books, Edward Elgar Publishing, number 14220.
    31. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    32. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    33. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    34. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    35. A. Ellerman & Barbara Buchner, 2008. "Over-Allocation or Abatement? A Preliminary Analysis of the EU ETS Based on the 2005–06 Emissions Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(2), pages 267-287, October.
    36. Pardo, Nicolás & Moya, José Antonio & Mercier, Arnaud, 2011. "Prospective on the energy efficiency and CO2 emissions in the EU cement industry," Energy, Elsevier, vol. 36(5), pages 3244-3254.
    37. Shiyi Chen, 2011. "The Abatement of Carbon Dioxide Intensity in China: Factors Decomposition and Policy Implications," The World Economy, Wiley Blackwell, vol. 34, pages 1148-1167, July.
    38. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédéric Branger & Misato Sato, 2017. "Solving the clinker dilemma with hybrid output-based allocation," Climatic Change, Springer, vol. 140(3), pages 483-501, February.
    2. Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
    3. Forin, Silvia & Radebach, Alexander & Steckel, Jan Christoph & Ward, Hauke, 2018. "The effect of industry delocalization on global energy use: A global sectoral perspective," Energy Economics, Elsevier, vol. 70(C), pages 233-243.
    4. Philippe Quirion, 2022. "Output-based allocation and output-based rebates: a survey," Chapters, in: Handbook on Trade Policy and Climate Change, chapter 7, pages 94-107, Edward Elgar Publishing.
    5. Guangyue Xu & Dong Xue & Hafizur Rehman, 2022. "Dynamic scenario analysis of CO2 emission in China’s cement industry by 2100 under the context of cutting overcapacity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-40, December.
    6. Frédéric Branger & Oskar Lecuyer & Philippe Quirion, 2015. "The European Union Emissions Trading Scheme: should we throw the flagship out with the bathwater?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 9-16, January.
    7. Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
    8. Frédéric Branger & Jean-Pierre Ponssard & Oliver Sartor & Misato Sato, 2015. "EU ETS, Free Allocations, and Activity Level Thresholds: The Devil Lies in the Details," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(3), pages 401-437.
    9. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    10. Fabio Zagonari, 2016. "Four Sustainability Paradigms for Environmental Management: A Methodological Analysis and an Empirical Study Based on 30 Italian Industries," Sustainability, MDPI, vol. 8(6), pages 1-34, May.
    11. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
    12. Stefano Clo' & Gianluca Iannucci & Alessandro Tampieri, 2024. "Emission permits and firms' environmental responsibility," Working Papers - Economics wp2024_06.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    13. Tao Du & Jian Wang & Heming Wang & Xin Tian & Qiang Yue & Hiroki Tanikawa, 2020. "CO2 emissions from the Chinese cement sector: Analysis from both the supply and demand sides," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 923-934, August.
    14. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    15. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    16. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Jie Su & Bo Zhou & Yuanpei Liao & Chaoshen Wang & Tian Feng, 2022. "Impact Mechanism of the Urban Network on Carbon Emissions in Rapidly Developing Regions: Example of 47 Cities in Southwest China," Land, MDPI, vol. 11(4), pages 1-19, March.
    18. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    19. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric Branger, Philippe Quirion, Julien Chevallier, 2017. "Carbon Leakage and Competitiveness of Cement and Steel Industries Under the EU ETS: Much Ado About Nothing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. Meunier, Guy & Ponssard, Jean-Pierre & Quirion, Philippe, 2014. "Carbon leakage and capacity-based allocations: Is the EU right?," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 262-279.
    3. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    4. Frédéric Branger & Jean-Pierre Ponssard & Oliver Sartor & Misato Sato, 2015. "EU ETS, Free Allocations, and Activity Level Thresholds: The Devil Lies in the Details," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(3), pages 401-437.
    5. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2014. "On the empirical content of carbon leakage criteria in the EU Emissions Trading Scheme," Ecological Economics, Elsevier, vol. 105(C), pages 78-88.
    6. Frédéric Branger & Misato Sato, 2017. "Solving the clinker dilemma with hybrid output-based allocation," Climatic Change, Springer, vol. 140(3), pages 483-501, February.
    7. Zhang, Zhong Xiang, 2012. "Competitiveness and Leakage Concerns and Border Carbon Adjustments," International Review of Environmental and Resource Economics, now publishers, vol. 6(3), pages 225-287, December.
    8. Barry Anderson & Corrado Di Maria, 2011. "Abatement and Allocation in the Pilot Phase of the EU ETS," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 83-103, January.
    9. Monjon, Stéphanie & Quirion, Philippe, 2011. "Addressing leakage in the EU ETS: Border adjustment or output-based allocation?," Ecological Economics, Elsevier, vol. 70(11), pages 1957-1971, September.
    10. Wang, M. & Zhou, P., 2017. "Does emission permit allocation affect CO2 cost pass-through? A theoretical analysis," Energy Economics, Elsevier, vol. 66(C), pages 140-146.
    11. Philippe Quirion, 2022. "Output-based allocation and output-based rebates: a survey," Chapters, in: Handbook on Trade Policy and Climate Change, chapter 7, pages 94-107, Edward Elgar Publishing.
    12. Vera Zipperer & Misato Sato & Karsten Neuhoff, 2017. "Benchmarks for Emissions Trading – General Principles for Emissions Scope," Discussion Papers of DIW Berlin 1712, DIW Berlin, German Institute for Economic Research.
    13. Cludius, Johanna & de Bruyn, Sander & Schumacher, Katja & Vergeer, Robert, 2020. "Ex-post investigation of cost pass-through in the EU ETS - an analysis for six industry sectors," Energy Economics, Elsevier, vol. 91(C).
    14. Mohamed Amine Boutabba & Sandrine Lardic, 2017. "EU Emissions Trading Scheme, competitiveness and carbon leakage: new evidence from cement and steel industries," Annals of Operations Research, Springer, vol. 255(1), pages 47-61, August.
    15. Jean-Philippe Nicolaï & Jorge Zamorano, 2018. "Windfall Profits Under Pollution Permits and Output-Based Allocation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 661-691, April.
    16. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    17. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
    18. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    19. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
    20. Petrick, Sebastian & Wagner, Ulrich J., 2014. "The impact of carbon trading on industry: Evidence from German manufacturing firms," Kiel Working Papers 1912, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Keywords

    Environmental Economics and Policy;

    JEL classification:

    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemcl:184453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.