IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v290y2020i1d10.1007_s10479-018-2955-3.html
   My bibliography  Save this article

Can sustainable operations achieve economic benefit and energy saving for manufacturing industries in China?

Author

Listed:
  • Ning Zhang

    (Jinan University)

  • Weijie Zhang

    (Jinan University)

Abstract

China has launched energy quota right trading system, as one of the sustainable operations, since 2016 to cap the total energy consumption, however the economic and energy saving effect of this new policy is unclear. Based on the input and output panel data of China’s 29 manufacturing sub-industries, this paper constructs the non-parametric optimization model under the command-and-control and the energy quota right trading scenario, to compare their potential economic gains and energy savings of these two polices for Chinese manufacturing industries. Results show that, whether at overall level or at the sub-industries level, the economic potential and energy-saving potential from energy quota right trading are higher than those from command-and-control. However, a part of energy-saving potential will be squeezed out due to the negative externality of the energy market trading. We suggest the well integration of both command-and-control and the market mechanism to achieve a Win–Win development.

Suggested Citation

  • Ning Zhang & Weijie Zhang, 2020. "Can sustainable operations achieve economic benefit and energy saving for manufacturing industries in China?," Annals of Operations Research, Springer, vol. 290(1), pages 145-168, July.
  • Handle: RePEc:spr:annopr:v:290:y:2020:i:1:d:10.1007_s10479-018-2955-3
    DOI: 10.1007/s10479-018-2955-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2955-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2955-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    2. Fujii, Hidemichi & Cao, Jing & Managi, Shunsuke, 2016. "Firm-level environmentally sensitive productivity and innovation in China," Applied Energy, Elsevier, vol. 184(C), pages 915-925.
    3. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    4. Li Chen & Boyu Zhang & Hanping Hou & Alfred Taudes, 2013. "Impact Study of Carbon Trading Market to Highway Freight Company in China," Springer Books, in: Feng Chen & Yisheng Liu & Guowei Hua (ed.), Ltlgb 2012, edition 127, chapter 0, pages 347-353, Springer.
    5. Fujii, Hidemichi & Managi, Shunsuke, 2016. "An evaluation of inclusive capital stock for urban planning," MPRA Paper 73306, University Library of Munich, Germany.
    6. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    7. Zhang, Yue-Jun & Hao, Jun-Fang & Song, Juan, 2016. "The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level," Applied Energy, Elsevier, vol. 174(C), pages 213-223.
    8. Fang Guo & Tao Zhao & Yanan Wang & Yue Wang, 2016. "Estimating the abatement potential of provincial carbon intensity based on the environmental learning curve model in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 685-705, October.
    9. Zhang, Xu & Qi, Tian-yu & Ou, Xun-min & Zhang, Xi-liang, 2017. "The role of multi-region integrated emissions trading scheme: A computable general equilibrium analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1860-1868.
    10. Johnstone, Nick & Managi, Shunsuke & Rodríguez, Miguel Cárdenas & Haščič, Ivan & Fujii, Hidemichi & Souchier, Martin, 2017. "Environmental policy design, innovation and efficiency gains in electricity generation," Energy Economics, Elsevier, vol. 63(C), pages 106-115.
    11. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    12. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    13. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    14. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
    15. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    16. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    17. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    18. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    19. Färe, Rolf & Grosskopf, Shawna & Pasurka,, Carl A., 2013. "Tradable permits and unrealized gains from trade," Energy Economics, Elsevier, vol. 40(C), pages 416-424.
    20. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    21. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Weijie & Yu, Yanni & Liu, Qingjun, 2024. "Is single or synergistic environmental permit trading system more effective? A study based on Chinese industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Santosh Kumar Sahu & Prantik Bagchi & Ajay Kumar & Kim Hua Tan, 2022. "Technology, price instruments and energy intensity: a study of firms in the manufacturing sector of the Indian economy," Annals of Operations Research, Springer, vol. 313(1), pages 319-339, June.
    3. Du, Minzhe & Wu, Fenger & Ye, Danfeng & Zhao, Yating & Liao, Liping, 2023. "Exploring the effects of energy quota trading policy on carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 124(C).
    4. Tang, Maogang & Li, Zhen & Hu, Fengxia & Wu, Baijun & Zhang, Ruihan, 2021. "Market failure, tradable discharge permit, and pollution reduction: Evidence from industrial firms in China," Ecological Economics, Elsevier, vol. 189(C).
    5. Mingguang Liu & Jue Zhang & Gaoyang Li, 2024. "Can Energy-Consuming Rights Trading Policies Help to Curb Air Pollution? Evidence from China," Energies, MDPI, vol. 17(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Weijie & Zhang, Ning & Yu, Yanni, 2019. "Carbon mitigation effects and potential cost savings from carbon emissions trading in China's regional industry," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 1-11.
    2. Yanni Yu & Weijie Zhang & Ning Zhang, 2018. "The Potential Gains from Carbon Emissions Trading in China’s Industrial Sectors," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1175-1194, December.
    3. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    4. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    5. Zhang, Yue-Jun & Liang, Ting & Jin, Yan-Lin & Shen, Bo, 2020. "The impact of carbon trading on economic output and carbon emissions reduction in China’s industrial sectors," Applied Energy, Elsevier, vol. 260(C).
    6. Zhang, Yue-Jun & Hao, Jun-Fang & Song, Juan, 2016. "The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level," Applied Energy, Elsevier, vol. 174(C), pages 213-223.
    7. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
    8. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    9. Kejia Yang & Yalin Lei, 2017. "The carbon dioxide marginal abatement cost calculation of Chinese provinces based on stochastic frontier analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 505-521, January.
    10. Mengfei Jiang & Xi Liang & David Reiner & Boqiang Lin & Maosheng Duan, 2018. "Stakeholder Views on Interactions between Low-carbon Policies and Carbon Markets in China: Lessons from the Guangdong ETS," Working Papers EPRG 1805, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Jie Zhang & Zhencheng Xing & Jigan Wang, 2016. "Analysis of CO 2 Emission Performance and Abatement Potential for Municipal Industrial Sectors in Jiangsu, China," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
    12. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    13. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    14. Chao Qi & Yongrok Choi, 2019. "A Study of the Feasibility of International ETS Cooperation between Shanghai and Korea from Environmental Efficiency and CO 2 Marginal Abatement Cost Perspectives," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    15. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    16. Jianxin Wu & Chunbo Ma, 2019. "The Convergence of China’s Marginal Abatement Cost of CO2: An Emission-Weighted Continuous State Space Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1099-1119, April.
    17. Wang, Juan & Li, Ziming & Wang, Yanan, 2024. "How does China's energy-consumption trading policy affect the carbon abatement costs? An analysis based on spatial difference-in-differences method," Energy, Elsevier, vol. 294(C).
    18. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    19. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    20. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:290:y:2020:i:1:d:10.1007_s10479-018-2955-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.