IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v113y2018icp487-499.html
   My bibliography  Save this article

Public acceptance of household energy-saving measures in Beijing: Heterogeneous preferences and policy implications

Author

Listed:
  • Jia, Jun-Jun
  • Xu, Jin-Hua
  • Fan, Ying

Abstract

Residents have different acceptance levels of household energy-saving measures and heterogeneous preferences for energy-saving attributes. Using questionnaire method, this paper studies the residents' acceptance of and preferences for 24 energy-saving measures in Beijing, China. Conjoint and variance analysis are used to examine preferences for attribute levels of energy-saving measures and the heterogeneity in preferences, respectively. The results show that energy-saving measures are relatively highly acceptable overall, while technical energy-saving measures are almost the least acceptable. The energy-saving domain (home versus transport) is the most important attribute that determines the acceptance level. Home and behavioral energy-saving measures are preferred to transport and technical energy-saving measures, respectively. For households living within the fourth Ring Road in Beijing and for people with high environmental concern, their average acceptance levels of energy-saving measures are 65% and 80% higher than those of their counterparts, respectively. Home energy-saving measures are more favored by households without elders over 60 years old, individuals with low educational level, and residents with low environmental concern, compared with their counterparts. Currently, effective policy tools targeting at behavioral energy conservation are scarce. Publicity about energy-saving measures contributes to improving residents' familiarity with these measures and environmental concern. Customized incentive policies are needed.

Suggested Citation

  • Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying, 2018. "Public acceptance of household energy-saving measures in Beijing: Heterogeneous preferences and policy implications," Energy Policy, Elsevier, vol. 113(C), pages 487-499.
  • Handle: RePEc:eee:enepol:v:113:y:2018:i:c:p:487-499
    DOI: 10.1016/j.enpol.2017.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151730770X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bird, Stephen & Hernández, Diana, 2012. "Policy options for the split incentive: Increasing energy efficiency for low-income renters," Energy Policy, Elsevier, vol. 48(C), pages 506-514.
    2. Qiu, Yueming & Colson, Gregory & Grebitus, Carola, 2014. "Risk preferences and purchase of energy-efficient technologies in the residential sector," Ecological Economics, Elsevier, vol. 107(C), pages 216-229.
    3. Hunt Allcott & Dmitry Taubinsky, 2015. "Evaluating Behaviorally Motivated Policy: Experimental Evidence from the Lightbulb Market," American Economic Review, American Economic Association, vol. 105(8), pages 2501-2538, August.
    4. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    5. Ronald J. Sutherland, 1991. "Market Barriers to Energy-Efficiency Investments," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 15-34.
    6. Dora L. Costa & Matthew E. Kahn, 2013. "Energy Conservation “Nudges” And Environmentalist Ideology: Evidence From A Randomized Residential Electricity Field Experiment," Journal of the European Economic Association, European Economic Association, vol. 11(3), pages 680-702, June.
    7. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    8. Banfi, Silvia & Farsi, Mehdi & Filippini, Massimo & Jakob, Martin, 2008. "Willingness to pay for energy-saving measures in residential buildings," Energy Economics, Elsevier, vol. 30(2), pages 503-516, March.
    9. Liu, Wenling & Zhang, Jinyun & Bluemling, Bettina & Mol, Arthur P.J. & Wang, Can, 2015. "Public participation in energy saving retrofitting of residential buildings in China," Applied Energy, Elsevier, vol. 147(C), pages 287-296.
    10. Henryson, Jessica & Hakansson, Teresa & Pyrko, Jurek, 2000. "Energy efficiency in buildings through information - Swedish perspective," Energy Policy, Elsevier, vol. 28(3), pages 169-180, March.
    11. Poortinga, Wouter & Steg, Linda & Vlek, Charles & Wiersma, Gerwin, 2003. "Household preferences for energy-saving measures: A conjoint analysis," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 49-64, February.
    12. Mills, Bradford & Schleich, Joachim, 2010. "What's driving energy efficient appliance label awareness and purchase propensity?," Energy Policy, Elsevier, vol. 38(2), pages 814-825, February.
    13. Kwak, So-Yoon & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2010. "Valuing energy-saving measures in residential buildings: A choice experiment study," Energy Policy, Elsevier, vol. 38(1), pages 673-677, January.
    14. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    15. Guo, Fei & Kurdgelashvili, Lado & Bengtsson, Magnus & Akenji, Lewis, 2016. "Analysis of achievable residential energy-saving potential and its implications for effective policy interventions: A study of Xiamen city in southern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 507-520.
    16. Burgess, Jacquelin & Nye, Michael, 2008. "Re-materialising energy use through transparent monitoring systems," Energy Policy, Elsevier, vol. 36(12), pages 4454-4459, December.
    17. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    18. Jing Liang & Yueming Qiu & Poornima Padmanabhan, 2017. "Consumers’ Attitudes towards Surcharges on Distributed Renewable Energy Generation and Energy Efficiency Programs," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    19. Price, Lynn & Levine, Mark D. & Zhou, Nan & Fridley, David & Aden, Nathaniel & Lu, Hongyou & McNeil, Michael & Zheng, Nina & Qin, Yining & Yowargana, Ping, 2011. "Assessment of China's energy-saving and emission-reduction accomplishments and opportunities during the 11th Five Year Plan," Energy Policy, Elsevier, vol. 39(4), pages 2165-2178, April.
    20. Cecilia Jakobsson & Satoshi Fujii & Tommy Gärling, 2002. "Effects of economic disincentives on private car use," Transportation, Springer, vol. 29(4), pages 349-370, November.
    21. Katzev, Richard D. & Johnson, Theodore R., 1983. "A social-psychological analysis of residential electricity consumption: the impact of minimal justification techniques," Journal of Economic Psychology, Elsevier, vol. 3(3-4), pages 267-284, September.
    22. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Yue & Ruyin Long & Junli Liu & Haiwen Liu & Hong Chen, 2019. "Empirical Study on Households’ Energy-Conservation Behavior of Jiangsu Province in China: The Role of Policies and Behavior Results," IJERPH, MDPI, vol. 16(6), pages 1-16, March.
    2. Jia, Ling & Qian, Queena K. & Meijer, Frits & Visscher, Henk, 2021. "How information stimulates homeowners’ cooperation in residential building energy retrofits in China," Energy Policy, Elsevier, vol. 157(C).
    3. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying & Ji, Qiang, 2018. "Willingness to accept energy-saving measures and adoption barriers in the residential sector: An empirical analysis in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 56-73.
    4. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    5. Prosperi, Maurizio & Lombardi, Mariarosaria & Spada, Alessia, 2019. "Ex ante assessment of social acceptance of small-scale agro-energy system: A case study in southern Italy," Energy Policy, Elsevier, vol. 124(C), pages 346-354.
    6. Zhang, Jian & Zhang, Wei & Song, Qi & Li, Xin & Ye, Xuanting & Liu, Yu & Xue, Yawei, 2020. "Can energy saving policies drive firm innovation behaviors? - Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    7. Tang Yao & Yigang Wei & Jianhong Zhang & Yani Wang & Yunjiang Yu & Wenyang Huang, 2022. "What influences the urban sewage discharge in China? The effect of diversified factors on the urban sewage discharge in different regions of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6099-6135, May.
    8. Tziogas, Charalampos & Papadopoulos, Agis & Georgiadis, Patroklos, 2021. "Policy implementation and energy-saving strategies for the residential sector: The case of the Greek Energy Refurbishment program," Energy Policy, Elsevier, vol. 149(C).
    9. Liu, Guo & Li, Xiaohu & Tan, Yongtao & Zhang, Guomin, 2020. "Building green retrofit in China: Policies, barriers and recommendations," Energy Policy, Elsevier, vol. 139(C).
    10. Siedlecka, Agnieszka, 2020. "Pro-Environmental Activities Of Rural Households In The Scope Of Reducing Electricity Consumption," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2020(2).
    11. Nihal Ahmed & Zeeshan Hamid & Farhan Mahboob & Khalil Ur Rehman & Muhammad Sibt e Ali & Piotr Senkus & Aneta Wysokińska-Senkus & Paweł Siemiński & Adam Skrzypek, 2022. "Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach," Agriculture, MDPI, vol. 12(9), pages 1-17, August.
    12. Wenyang Huang & Huiwen Wang & Yigang Wei, 2018. "Endogenous or Exogenous? Examining Trans-Boundary Air Pollution by Using the Air Quality Index (AQI): A Case Study of 30 Provinces and Autonomous Regions in China," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    13. Stefania Troiano & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Federico Nassivera, 2019. "Households’ Preferences for a New ‘Climate-Friendly’ Heating System: Does Contribution to Reducing Greenhouse Gases Matter?," Energies, MDPI, vol. 12(13), pages 1-19, July.
    14. Zhu, Xinhua & Li, Yan & Zhang, Peifeng & Wei, Yigang & Zheng, Xuyang & Xie, Lingling, 2019. "Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency," Land Use Policy, Elsevier, vol. 88(C).
    15. Mohanty, Pradeep Kumar & Patro, Archana & Harindranath, R.M. & Senthil Kumar, N. & Panda, Debadutta Kumar & Dubey, Ritesh, 2021. "Perceived government initiatives: Scale development, validation and impact on consumers' pro-environmental behaviour," Energy Policy, Elsevier, vol. 158(C).
    16. Nie, Hongguang & Kemp, René & Xu, Jin-Hua & Vasseur, Véronique & Fan, Ying, 2020. "Split incentive effects on the adoption of technical and behavioral energy-saving measures in the household sector in Western Europe," Energy Policy, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying & Ji, Qiang, 2018. "Willingness to accept energy-saving measures and adoption barriers in the residential sector: An empirical analysis in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 56-73.
    2. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    3. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    4. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    5. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    6. Jia, Jun–Jun & Wu, Hua-Qing & Nie, Hong-Guang & Fan, Ying, 2019. "Modeling the willingness to pay for energy efficient residence in urban residential sector in China," Energy Policy, Elsevier, vol. 135(C).
    7. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    8. Felipe Encinas & Carlos Marmolejo-Duarte & Carlos Aguirre-Nuñez & Francisco Vergara-Perucich, 2020. "When Residential Energy Labeling Becomes Irrelevant: Sustainability vs. Profitability in the Liberalized Chilean Property Market," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    9. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    11. Ce Huang & Jiefang Ma & Kun Song, 2021. "Homeowners’ Willingness to Make Investment in Energy Efficiency Retrofit of Residential Buildings in China and Its Influencing Factors," Energies, MDPI, vol. 14(5), pages 1-17, February.
    12. Kaplowitz, Michael D. & Thorp, Laurie & Coleman, Kayla & Kwame Yeboah, Felix, 2012. "Energy conservation attitudes, knowledge, and behaviors in science laboratories," Energy Policy, Elsevier, vol. 50(C), pages 581-591.
    13. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    14. Charlier, Dorothée, 2015. "Energy efficiency investments in the context of split incentives among French households," Energy Policy, Elsevier, vol. 87(C), pages 465-479.
    15. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
    16. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    17. Andor, Mark A. & Fels, Katja M., 2018. "Behavioral Economics and Energy Conservation – A Systematic Review of Non-price Interventions and Their Causal Effects," Ecological Economics, Elsevier, vol. 148(C), pages 178-210.
    18. Farsi, Mehdi, 2010. "Risk aversion and willingness to pay for energy efficient systems in rental apartments," Energy Policy, Elsevier, vol. 38(6), pages 3078-3088, June.
    19. Murtagh, Niamh & Nati, Michele & Headley, William R. & Gatersleben, Birgitta & Gluhak, Alexander & Imran, Muhammad Ali & Uzzell, David, 2013. "Individual energy use and feedback in an office setting: A field trial," Energy Policy, Elsevier, vol. 62(C), pages 717-728.
    20. Cattaneo, Cristina, 2018. "Internal and External Barriers to Energy Efficiency: Made-to-Measure Policy Interventions," CSI: Climate and Sustainable Innovation 269536, Fondazione Eni Enrico Mattei (FEEM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:113:y:2018:i:c:p:487-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.