IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i2p202-d89200.html
   My bibliography  Save this article

LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector

Author

Listed:
  • Suyi Kim

    (College of Business Management, Hongik University, 2639 Sejong-ro, Sejong-si 30016, Korea)

Abstract

The energy consumption of Korea’s manufacturing sector has sharply increased over the past 20 years. This paper decomposes the factors influencing energy consumption in this sector using the logarithmic mean Divisia index (LMDI) method and analyzes the specific characteristics of energy consumption from 1991 to 2011. The analysis reveals that the activity effect played a major role in increasing energy consumption. While the structure and intensity effects contributed to the reduction in energy consumption, the structure effect was greater than the intensity effect. Over the periods, the effects moved in opposite directions; that is, the structure effect decreased when the intensity effect increased and vice versa. The energy consumption by each industry is decomposed into two factors, activity and intensity effects. The increase of energy consumption due to the activity effect is largest in the petroleum and chemical industry, followed by the primary metal and non-ferrous industry, and the fabricated metal industry. The decrease of energy consumption due to the intensity effect is largest in the fabricated metal industry, followed by the primary metal and non-ferrous industry, and the non-metallic industry. The energy consumption due to intensity effect in the petroleum and chemical industry has risen. To save energy consumption more efficiently for addressing climate change in this sector, industrial restructuring and industry-specific energy saving policies should be introduced.

Suggested Citation

  • Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:202-:d:89200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/2/202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/2/202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    3. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    4. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
    5. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    6. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    7. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    8. X. Q. Liu & B. W. Ang & H.L. Ong, 1992. "The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 161-178.
    9. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    10. Oh, Ilyoung & Wehrmeyer, Walter & Mulugetta, Yacob, 2010. "Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea," Energy Policy, Elsevier, vol. 38(1), pages 364-377, January.
    11. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    12. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    13. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    14. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    15. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    16. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    17. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    18. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    19. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    20. Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
    21. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    3. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    4. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
    5. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    6. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
    7. Fontaine Dubois Bissai & Bienvenu Gael Fouda Mbanga & Cyrille Adiang Mezoue & Séverin Nguiya, 2023. "An Analysis of the Driving Factors Related to Energy Consumption in the Road Transport Sector of the City of Douala, Cameroon," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    8. Taeyoung Jin & Bongseok Choi, 2020. "Sectoral Decomposition of Korea’s Energy Consumption by Global Value Chain Dimensions," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    9. Hyungsu Kang & Hyunmin Daniel Zoh, 2022. "Classifying Regional and Industrial Characteristics of GHG Emissions in South Korea," Energies, MDPI, vol. 15(20), pages 1-16, October.
    10. Yang Kong & Weijun He & Liang Yuan & Juqin Shen & Min An & Dagmawi Mulugeta Degefu & Xin Gao & Zhaofang Zhang & Fuhua Sun & Zhongchi Wan, 2019. "Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017," IJERPH, MDPI, vol. 16(23), pages 1-20, December.
    11. Jun Yang & Yongmei Miao & Yunfan Li & Yiwen Li & Xiaoxue Ma & Shichun Xu & Shuxiao Wang, 2019. "Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    12. Yue, Xuanyu & Byrne, Julie, 2024. "Identifying the determinants of carbon emissions of individual airlines around the world," Journal of Air Transport Management, Elsevier, vol. 115(C).
    13. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    14. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    15. Jianli Sui & Wenqiang Lv, 2021. "Crop Production and Agricultural Carbon Emissions: Relationship Diagnosis and Decomposition Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, August.
    16. YoungSeok Hwang & Jung-Sup Um & JunHwa Hwang & Stephan Schlüter, 2020. "Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO 2 Flux," Energies, MDPI, vol. 13(22), pages 1-20, November.
    17. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    18. María del P. Pablo-Romero ,, & Rafael Pozo-Barajas & Javier Sánchez-Rivas, 2017. "Relationships between Tourism and Hospitality Sector Electricity Consumption in Spanish Provinces (1999–2013)," Sustainability, MDPI, vol. 9(4), pages 1-12, March.
    19. Wei Li & Guomin Li & Rongxia Zhang & Wen Sun & Wen Wu & Baihui Jin & Pengfei Cui, 2017. "Carbon Reduction Potential of Resource-Dependent Regions Based on Simulated Annealing Programming Algorithm," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    20. Chen, Jiandong & Yu, Jie & Ai, Bowei & Song, Malin & Hou, Wenxuan, 2019. "Determinants of global natural gas consumption and import–export flows," Energy Economics, Elsevier, vol. 83(C), pages 588-602.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    2. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    3. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    4. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    5. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    6. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    7. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    8. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    9. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    10. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    11. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    12. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    13. Yue Yuan & Sunhee Suk, 2023. "Decomposition Analysis and Trend Prediction of Energy-Consumption CO 2 Emissions in China’s Yangtze River Delta Region," Energies, MDPI, vol. 16(11), pages 1-18, June.
    14. Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
    15. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    16. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    17. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    18. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    19. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    20. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:202-:d:89200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.