IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v41y2012icp125-138.html
   My bibliography  Save this item

Modelling transport energy demand: A socio-technical approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. João Andrade de Carvalho & André de Castro & Gutemberg Hespanha Brasil & Paulo Antonio de Souza & Andrés Z. Mendiburu, 2022. "CO 2 Emission Factors and Carbon Losses for Off-Road Mining Trucks," Energies, MDPI, vol. 15(7), pages 1-17, April.
  2. Leung, Abraham & Burke, Matthew & Perl, Anthony & Cui, Jianqiang, 2018. "The peak oil and oil vulnerability discourse in urban transport policy: A comparative discourse analysis of Hong Kong and Brisbane," Transport Policy, Elsevier, vol. 65(C), pages 5-18.
  3. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
  4. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
  5. Eggimann, Sven & Hall, Jim W. & Eyre, Nick, 2019. "A high-resolution spatio-temporal energy demand simulation to explore the potential of heating demand side management with large-scale heat pump diffusion," Applied Energy, Elsevier, vol. 236(C), pages 997-1010.
  6. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
  7. Heuberger, Clara F. & Bains, Praveen K. & Mac Dowell, Niall, 2020. "The EV-olution of the power system: A spatio-temporal optimisation model to investigate the impact of electric vehicle deployment," Applied Energy, Elsevier, vol. 257(C).
  8. Edmond Daramy-Williams & Jillian Anable & Susan Grant-Muller, 2019. "Car Use: Intentional, Habitual, or Both? Insights from Anscombe and the Mobility Biography Literature," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
  9. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
  10. Siskos, Pelopidas & Moysoglou, Yannis, 2019. "Assessing the impacts of setting CO2 emission targets on truck manufacturers: A model implementation and application for the EU," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 123-138.
  11. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  12. Harvey, L.D.D., 2013. "Global climate-oriented transportation scenarios," Energy Policy, Elsevier, vol. 54(C), pages 87-103.
  13. Irene Carvalho & Ricardo Simoes & Arlindo Silva, 2018. "Applying the Theory of Inventive Problem Solving (TRIZ) to identify design opportunities for improved passenger car eco-effectiveness," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 907-932, August.
  14. Thomas W. Crawford, 2020. "Urban Form as a Technological Driver of Carbon Dioxide Emission: A Structural Human Ecology Analysis of Onroad and Residential Sectors in the Conterminous U.S," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
  15. Napp, T.A. & Few, S. & Sood, A. & Bernie, D. & Hawkes, A. & Gambhir, A., 2019. "The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets," Applied Energy, Elsevier, vol. 238(C), pages 351-367.
  16. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
  17. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  18. Brand, Christian & Cluzel, Celine & Anable, Jillian, 2017. "Modeling the uptake of plug-in vehicles in a heterogeneous car market using a consumer segmentation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 121-136.
  19. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  20. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
  21. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  22. Santos, Alberto & Maia, Pedro & Jacob, Rodrigo & Wei, Huang & Callegari, Camila & Oliveira Fiorini, Ana Carolina & Schaeffer, Roberto & Szklo, Alexandre, 2024. "Road conditions and driving patterns on fuel usage: Lessons from an emerging economy," Energy, Elsevier, vol. 295(C).
  23. Pye, Steve & Daly, Hannah, 2015. "Modelling sustainable urban travel in a whole systems energy model," Applied Energy, Elsevier, vol. 159(C), pages 97-107.
  24. Gössling, Stefan, 2013. "Urban transport transitions: Copenhagen, City of Cyclists," Journal of Transport Geography, Elsevier, vol. 33(C), pages 196-206.
  25. Galvin, Ray, 2017. "How does speed affect the rebound effect in car travel? Conceptual issues explored in case study of 900 Formula 1 Grand Prix speed trials," Energy, Elsevier, vol. 128(C), pages 28-38.
  26. van Sluisveld, Mariësse A.E. & Martínez, Sara Herreras & Daioglou, Vassilis & van Vuuren, Detlef P., 2016. "Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 309-319.
  27. Herberz, Mario & Hahnel, Ulf J.J. & Brosch, Tobias, 2020. "The importance of consumer motives for green mobility: A multi-modal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 102-118.
  28. Goldschmidt, Rüdiger & Richter, Andreas & Pfeil, Raphael, 2019. "Active stakeholder involvement and organisational tasks as factors for an effective communication and governance strategy in the promotion of e-taxis. Results from a field research lab," Energy Policy, Elsevier, vol. 135(C).
  29. Brückmann, Gracia, 2022. "The effects of policies providing information and trialling on the knowledge about and the intention to adopt new energy technologies," Energy Policy, Elsevier, vol. 167(C).
  30. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
  31. Jan-Dirk Schmöcker & Tsuyoshi Hatori & David Watling, 2014. "Dynamic process model of mass effects on travel demand," Transportation, Springer, vol. 41(2), pages 279-304, March.
  32. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
  33. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  34. Zhao, Jingjing & Heydari, Shahram & Forrest, Michael & Stevens, Alan & Preston, John, 2023. "Investigating correlates of personal and freight road transport energy consumption: A case study of England," Journal of Transport Geography, Elsevier, vol. 112(C).
  35. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.
  36. Jian Chai & Shubin Wang & Shouyang Wang & Ju’e Guo, 2012. "Demand Forecast of Petroleum Product Consumption in the Chinese Transportation Industry," Energies, MDPI, vol. 5(3), pages 1-22, March.
  37. Xu, Xun & Chase, Nicholas & Peng, Tianduo, 2021. "Economic structural change and freight transport demand in China," Energy Policy, Elsevier, vol. 158(C).
  38. Brand, Christian & Anable, Jillian & Ketsopoulou, Ioanna & Watson, Jim, 2020. "Road to zero or road to nowhere? Disrupting transport and energy in a zero carbon world," Energy Policy, Elsevier, vol. 139(C).
  39. Siskos, Pelopidas & Zazias, Georgios & Petropoulos, Apostolos & Evangelopoulou, Stavroula & Capros, Pantelis, 2018. "Implications of delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model," Energy Policy, Elsevier, vol. 121(C), pages 48-60.
  40. Janet Stephenson & Debbie Hopkins & Adam Doering, 2015. "Conceptualizing transport transitions: Energy Cultures as an organizing framework," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(4), pages 354-364, July.
  41. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
  42. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
  43. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "A new artificial neural networks algorithm to analyze the nexus among logistics performance, energy demand, and environmental degradation," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 315-328.
  44. Rashid Khan, Haroon Ur & Siddique, Muhammad & Zaman, Khalid & Yousaf, Sheikh Usman & Shoukry, Alaa Mohamd & Gani, Showkat & Sasmoko, & Khan, Aqeel & Hishan, Sanil S. & Saleem, Hummera, 2018. "The impact of air transportation, railways transportation, and port container traffic on energy demand, customs duty, and economic growth: Evidence from a panel of low-, middle-, and high -income coun," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 18-35.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.