IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v128y2017icp28-38.html
   My bibliography  Save this article

How does speed affect the rebound effect in car travel? Conceptual issues explored in case study of 900 Formula 1 Grand Prix speed trials

Author

Listed:
  • Galvin, Ray

Abstract

The “rebound effect” occurs when reductions in energy consumption following energy efficiency increases are lower than engineering estimates. In cars this happens when drivers increase their distance travelled or average speed, as a behavioural response to cheaper travel. Rebound effects due to increased distance travelled have been extensively studied, but only one existing study attempts to quantify rebound effects due to increased average speed. This paper builds on that study, using a much larger empirical base and offering more generalised and more widely applicable mathematical modelling. It uses data from 30 Formula 1 Grand Prix time trial sessions of 10 vehicles doing 3 trials each, in 2014 and 2015. The heavily regulated Formula 1 regime, with its precisely measured data, provides a highly controlled framework for developing mathematics of average speed rebounds. The study thereby shows how speed and distance rebounds can be coherently combined in road vehicle travel to produce total rebound figures. It then shows how even small increases in average speed can nullify all the energy savings that are expected from energy efficiency increases. It also raises critical questions on the adequacy of proposed new road vehicle fuel efficiency testing procedures.

Suggested Citation

  • Galvin, Ray, 2017. "How does speed affect the rebound effect in car travel? Conceptual issues explored in case study of 900 Formula 1 Grand Prix speed trials," Energy, Elsevier, vol. 128(C), pages 28-38.
  • Handle: RePEc:eee:energy:v:128:y:2017:i:c:p:28-38
    DOI: 10.1016/j.energy.2017.03.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217305443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brookes, Len, 1990. "The greenhouse effect: the fallacies in the energy efficiency solution," Energy Policy, Elsevier, vol. 18(2), pages 199-201, March.
    2. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.
    3. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    4. Goerlich, Roland & Wirl, Franz, 2012. "Interdependencies between transport fuel demand, efficiency and quality: An application to Austria," Energy Policy, Elsevier, vol. 41(C), pages 47-58.
    5. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    6. Ruzzenenti, F. & Basosi, R., 2008. "The role of the power/efficiency misconception in the rebound effect's size debate: Does efficiency actually lead to a power enhancement?," Energy Policy, Elsevier, vol. 36(9), pages 3626-3632, September.
    7. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    8. Khaled Ben Abdallah & Mounir Belloumi & Daniel de Wolf, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Post-Print halshs-02396791, HAL.
    9. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    10. Philippe Barla & Bernard Lamonde & Luis Miranda-Moreno & Nathalie Boucher, 2009. "Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect," Transportation, Springer, vol. 36(4), pages 389-402, July.
    11. Galvin, Ray, 2015. "The rebound effect, gender and social justice: A case study in Germany," Energy Policy, Elsevier, vol. 86(C), pages 759-769.
    12. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," Energy Economics, Elsevier, vol. 34(2), pages 461-467.
    13. Galvin, Ray, 2014. "Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data," Energy Policy, Elsevier, vol. 73(C), pages 323-332.
    14. Ajanovic, Amela & Haas, Reinhard, 2012. "The role of efficiency improvements vs. price effects for modeling passenger car transport demand and energy demand—Lessons from European countries," Energy Policy, Elsevier, vol. 41(C), pages 36-46.
    15. Odeck, James & Johansen, Kjell, 2016. "Elasticities of fuel and traffic demand and the direct rebound effects: An econometric estimation in the case of Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 1-13.
    16. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    17. Anable, Jillian & Brand, Christian & Tran, Martino & Eyre, Nick, 2012. "Modelling transport energy demand: A socio-technical approach," Energy Policy, Elsevier, vol. 41(C), pages 125-138.
    18. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    19. Ruzzenenti, F. & Basosi, R., 2008. "The rebound effect: An evolutionary perspective," Ecological Economics, Elsevier, vol. 67(4), pages 526-537, November.
    20. Saunders, Harry D., 2013. "Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1317-1330.
    21. Ajanovic, Amela & Schipper, Lee & Haas, Reinhard, 2012. "The impact of more efficient but larger new passenger cars on energy consumption in EU-15 countries," Energy, Elsevier, vol. 48(1), pages 346-355.
    22. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    23. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    24. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    25. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    26. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo Reis Mourao, 2018. "Smoking Gentlemen—How Formula One Has Controlled CO 2 Emissions," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    2. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).
    3. Galvin, Ray & Martulli, Alessandro & Ruzzenenti, Franco, 2021. "Does power curb energy efficiency? Evidence from two decades of European truck tests," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    2. Tufan Özsoy, 2024. "The “energy rebound effect” within the framework of environmental sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
    3. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
    5. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    6. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    7. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    8. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    9. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    10. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    11. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    12. Galvin, Ray & Martulli, Alessandro & Ruzzenenti, Franco, 2021. "Does power curb energy efficiency? Evidence from two decades of European truck tests," Energy, Elsevier, vol. 232(C).
    13. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    14. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    15. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    16. Lu-Yi Qiu & Ling-Yun He, 2017. "Are Chinese Green Transport Policies Effective? A New Perspective from Direct Pollution Rebound Effect, and Empirical Evidence From the Road Transport Sector," Sustainability, MDPI, vol. 9(3), pages 1-11, March.
    17. Lu-Yi Qiu & Ling-Yun He, 2016. "Are Chinese transport policies effective? A new perspective from direct pollution rebound effect, and empirical evidence from road transport sector," Papers 1612.02653, arXiv.org.
    18. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    19. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    20. Chen, Zhenni & Du, Huibin & Li, Jianglong & Southworth, Frank & Ma, Shoufeng, 2019. "Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect," Energy Economics, Elsevier, vol. 81(C), pages 1029-1041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:128:y:2017:i:c:p:28-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.