IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v191y2008i3p786-802.html
   My bibliography  Save this item

Solving circle packing problems by global optimization: Numerical results and industrial applications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
  2. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
  3. I Al-Mudahka & M Hifi & R M'Hallah, 2011. "Packing circles in the smallest circle: an adaptive hybrid algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1917-1930, November.
  4. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
  5. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
  6. Galiev, Shamil I. & Lisafina, Maria S., 2013. "Linear models for the approximate solution of the problem of packing equal circles into a given domain," European Journal of Operational Research, Elsevier, vol. 230(3), pages 505-514.
  7. A. Grosso & A. Jamali & M. Locatelli & F. Schoen, 2010. "Solving the problem of packing equal and unequal circles in a circular container," Journal of Global Optimization, Springer, vol. 47(1), pages 63-81, May.
  8. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
  9. López, C.O. & Beasley, J.E., 2011. "A heuristic for the circle packing problem with a variety of containers," European Journal of Operational Research, Elsevier, vol. 214(3), pages 512-525, November.
  10. Giorgio Fasano, 2013. "A global optimization point of view to handle non-standard object packing problems," Journal of Global Optimization, Springer, vol. 55(2), pages 279-299, February.
  11. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2017. "A nonlinear programming model with implicit variables for packing ellipsoids," Journal of Global Optimization, Springer, vol. 68(3), pages 467-499, July.
  12. Huang, Wenqi & Ye, Tao, 2011. "Global optimization method for finding dense packings of equal circles in a circle," European Journal of Operational Research, Elsevier, vol. 210(3), pages 474-481, May.
  13. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2016. "Packing ellipsoids by nonlinear optimization," Journal of Global Optimization, Springer, vol. 65(4), pages 709-743, August.
  14. János Pintér & Zoltán Horváth, 2013. "Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints," Journal of Global Optimization, Springer, vol. 57(1), pages 191-215, September.
  15. Zvi Drezner, 2010. "On the unboundedness of facility layout problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 205-216, October.
  16. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong & Lü, Zhipeng & Fu, Zhang-Hua, 2022. "Iterated dynamic thresholding search for packing equal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 299(1), pages 137-153.
  17. Rodrigues, S. & Bauer, P. & Bosman, Peter A.N., 2016. "Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 587-609.
  18. Tiago Montanher & Arnold Neumaier & Mihály Csaba Markót & Ferenc Domes & Hermann Schichl, 2019. "Rigorous packing of unit squares into a circle," Journal of Global Optimization, Springer, vol. 73(3), pages 547-565, March.
  19. T. Kubach & A. Bortfeldt & H. Gehring, 2009. "Parallel greedy algorithms for packing unequal circles into a strip or a rectangle," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 461-477, December.
  20. Yaohua He & Yong Wu, 2013. "Packing non-identical circles within a rectangle with open length," Journal of Global Optimization, Springer, vol. 56(3), pages 1187-1215, July.
  21. Ambros Gleixner & Stephen J. Maher & Benjamin Müller & João Pedro Pedroso, 2020. "Price-and-verify: a new algorithm for recursive circle packing using Dantzig–Wolfe decomposition," Annals of Operations Research, Springer, vol. 284(2), pages 527-555, January.
  22. López, C.O. & Beasley, J.E., 2016. "A formulation space search heuristic for packing unequal circles in a fixed size circular container," European Journal of Operational Research, Elsevier, vol. 251(1), pages 64-73.
  23. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
  24. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2023. "Model Development and Solver Demonstrations Using Randomized Test Problems," SN Operations Research Forum, Springer, vol. 4(1), pages 1-15, March.
  25. Xiangyang Huang & LiGuo Huang, 2023. "Spreading Points Using Gradient and Tabu," SN Operations Research Forum, Springer, vol. 4(2), pages 1-11, June.
  26. Hinostroza, Ignacio & Pradenas, Lorena & Parada, Víctor, 2013. "Board cutting from logs: Optimal and heuristic approaches for the problem of packing rectangles in a circle," International Journal of Production Economics, Elsevier, vol. 145(2), pages 541-546.
  27. Mustafa Çağlayan & János Pintér, 2013. "Development and calibration of a currency trading strategy using global optimization," Journal of Global Optimization, Springer, vol. 56(2), pages 353-371, June.
  28. János D. Pintér, 2018. "How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results," Annals of Operations Research, Springer, vol. 265(1), pages 119-141, June.
  29. Igor Litvinchev & Andreas Fischer & Tetyana Romanova & Petro Stetsyuk, 2024. "A New Class of Irregular Packing Problems Reducible to Sphere Packing in Arbitrary Norms," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
  30. Wang, Yingcong & Wang, Yanfeng & Sun, Junwei & Huang, Chun & Zhang, Xuncai, 2019. "A stimulus–response-based allocation method for the circle packing problem with equilibrium constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 232-247.
  31. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2020. "Packing ovals in optimized regular polygons," Journal of Global Optimization, Springer, vol. 77(1), pages 175-196, May.
  32. Zhengguan Dai & Kathleen Xu & Melkior Ornik, 2021. "Repulsion-based p-dispersion with distance constraints in non-convex polygons," Annals of Operations Research, Springer, vol. 307(1), pages 75-91, December.
  33. János Pintér & Frank Kampas, 2013. "Benchmarking nonlinear optimization software in technical computing environments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 133-162, April.
  34. Akang Wang & Chrysanthos E. Gounaris, 2021. "On tackling reverse convex constraints for non-overlapping of unequal circles," Journal of Global Optimization, Springer, vol. 80(2), pages 357-385, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.