IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v55y2013i2p279-299.html
   My bibliography  Save this article

A global optimization point of view to handle non-standard object packing problems

Author

Listed:
  • Giorgio Fasano

Abstract

This work originates from research carried out in support to the cargo accommodation of space vehicles/modules. The goal of this activity is to maximize the loaded cargo, taking into account the given accommodation requirements. Items can often be modelled as parallelepipeds, but it is even more frequent that real-world issues make this approximation no longer acceptable. These aspects and the presence of additional overall conditions, such as balancing, give rise to very challenging non-standard packing problems, not only in the frame of space engineering, but also in different application areas. This article considers first the orthogonal packing of tetris-like items, within a convex domain and subsequently the packing of polygons with (continuous) rotations in a convex domain. The proposed approach is based on mixed integer linear/non-linear programming (MIP, MINLP), from a global optimization point of view. The tetris-like formulation is exploited to provide the MINLP solution process with an approximated starting solution. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Giorgio Fasano, 2013. "A global optimization point of view to handle non-standard object packing problems," Journal of Global Optimization, Springer, vol. 55(2), pages 279-299, February.
  • Handle: RePEc:spr:jglopt:v:55:y:2013:i:2:p:279-299
    DOI: 10.1007/s10898-012-9865-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9865-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9865-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    2. Chen, C. S. & Lee, S. M. & Shen, Q. S., 1995. "An analytical model for the container loading problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 68-76, January.
    3. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    4. Sándor P. Fekete & Jörg Schepers, 2004. "A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 353-368, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed Asaeedi & Farzad Didehvar & Ali Mohades, 2018. "NLP Formulation for Polygon Optimization Problems," Mathematics, MDPI, vol. 7(1), pages 1-25, December.
    2. Romanova, T. & Bennell, J. & Stoyan, Y. & Pankratov, A., 2018. "Packing of concave polyhedra with continuous rotations using nonlinear optimisation," European Journal of Operational Research, Elsevier, vol. 268(1), pages 37-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    2. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    3. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2012. "The Pallet-Packing Vehicle Routing Problem," Transportation Science, INFORMS, vol. 46(3), pages 341-358, August.
    4. H-L Li & J-F Tsai & N-Z Hu, 2003. "A distributed global optimization method for packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(4), pages 419-425, April.
    5. Sciomachen, Anna & Tanfani, Elena, 2007. "A 3D-BPP approach for optimising stowage plans and terminal productivity," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1433-1446, December.
    6. Fekete, Sandor P. & van der Veen, Jan C., 2007. "PackLib2: An integrated library of multi-dimensional packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1131-1135, December.
    7. Kurpel, Deidson Vitorio & Scarpin, Cassius Tadeu & Pécora Junior, José Eduardo & Schenekemberg, Cleder Marcos & Coelho, Leandro C., 2020. "The exact solutions of several types of container loading problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 87-107.
    8. Crainic, Teodor Gabriel & Perboli, Guido & Tadei, Roberto, 2009. "TS2PACK: A two-level tabu search for the three-dimensional bin packing problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 744-760, June.
    9. Gonçalves, José Fernando & Resende, Mauricio G.C., 2013. "A biased random key genetic algorithm for 2D and 3D bin packing problems," International Journal of Production Economics, Elsevier, vol. 145(2), pages 500-510.
    10. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    11. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    12. Castellucci, Pedro B. & Toledo, Franklina M.B. & Costa, Alysson M., 2019. "Output maximization container loading problem with time availability constraints," Operations Research Perspectives, Elsevier, vol. 6(C).
    13. Paquay, Célia & Limbourg, Sabine & Schyns, Michaël, 2018. "A tailored two-phase constructive heuristic for the three-dimensional Multiple Bin Size Bin Packing Problem with transportation constraints," European Journal of Operational Research, Elsevier, vol. 267(1), pages 52-64.
    14. Lorenzo Brunetta & Philippe Grégoire, 2005. "A General Purpose Algorithm for Three-Dimensional Packing," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 328-338, August.
    15. Jiankun Sun & Dennis J. Zhang & Haoyuan Hu & Jan A. Van Mieghem, 2022. "Predicting Human Discretion to Adjust Algorithmic Prescription: A Large-Scale Field Experiment in Warehouse Operations," Management Science, INFORMS, vol. 68(2), pages 846-865, February.
    16. Manuel Iori & Juan-José Salazar-González & Daniele Vigo, 2007. "An Exact Approach for the Vehicle Routing Problem with Two-Dimensional Loading Constraints," Transportation Science, INFORMS, vol. 41(2), pages 253-264, May.
    17. Wu, Yong & Li, Wenkai & Goh, Mark & de Souza, Robert, 2010. "Three-dimensional bin packing problem with variable bin height," European Journal of Operational Research, Elsevier, vol. 202(2), pages 347-355, April.
    18. Zhu, Wenbin & Zhang, Zhaoyi & Oon, Wee-Chong & Lim, Andrew, 2012. "Space defragmentation for packing problems," European Journal of Operational Research, Elsevier, vol. 222(3), pages 452-463.
    19. F. Parreño & R. Alvarez-Valdes & J. Oliveira & J. Tamarit, 2010. "A hybrid GRASP/VND algorithm for two- and three-dimensional bin packing," Annals of Operations Research, Springer, vol. 179(1), pages 203-220, September.
    20. Pisinger, David, 2002. "Heuristics for the container loading problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 382-392, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:55:y:2013:i:2:p:279-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.