IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v65y2016icp587-609.html
   My bibliography  Save this article

Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability

Author

Listed:
  • Rodrigues, S.
  • Bauer, P.
  • Bosman, Peter A.N.

Abstract

Currently, Offshore Wind Farms (OWFs) are designed to achieve high turbine density so as to reduce costs. However, due to wake interferences, densely packing turbines reduces energy production. Having insight into optimized trade-offs between energy production, capital investment and operational costs would be valuable to OWFs designers. To obtain this insight, the design of OWFs should be formulated as a multi-objective optimization problem. How to best solve a Multi-Objective Wind Farm Layout Optimization Problem (MOWFLOP) is however still largely an open question. It is however known that evolutionary algorithms (EAs) are among the state-of-the-art for solving multi-objective optimization problems. This work studies the different features that an MO Evolutionary Algorithm (MOEA) should have and which Constraint-Handling Techniques (CHTs) are suitable for solving MOWFLOP. We also investigate the relation between problem dimensionality/complexity and the degrees of freedom offered by different turbine-placement grid resolutions. Finally, the influence of problem size on algorithm performance is studied. The performance of two variants of the recently introduced Multi-Objective Gene-pool Optimal Mixing Evolutionary Algorithm (MOGOMEA) is compared with a traditional and a novel version of the Nondominated Sorting Genetic Algorithm II (NSGA-II). Five CHTs were used to assess which technique provides the best results. Results on a case study with different OWF areas demonstrate that one variant of MOGOMEA outperforms the NSGA-II for all tested problem sizes and CHTs.

Suggested Citation

  • Rodrigues, S. & Bauer, P. & Bosman, Peter A.N., 2016. "Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 587-609.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:587-609
    DOI: 10.1016/j.rser.2016.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, J. Serrano & Rodríguez, Á.G. González & Mora, J. Castro & Burgos Payán, M. & Santos, J. Riquelme, 2011. "Overall design optimization of wind farms," Renewable Energy, Elsevier, vol. 36(7), pages 1973-1982.
    2. Hifi, Mhand & Paschos, Vangelis Th. & Zissimopoulos, Vassilis, 2004. "A simulated annealing approach for the circular cutting problem," European Journal of Operational Research, Elsevier, vol. 159(2), pages 430-448, December.
    3. Emami, Alireza & Noghreh, Pirooz, 2010. "New approach on optimization in placement of wind turbines within wind farm by genetic algorithms," Renewable Energy, Elsevier, vol. 35(7), pages 1559-1564.
    4. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    5. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    6. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.
    7. Gonzalez-Rodriguez, Angel G. & Burgos-Payan, Manuel & Riquelme-Santos, Jesus & Serrano-Gonzalez, Javier, 2015. "Reducing computational effort in the calculation of annual energy produced in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 656-665.
    8. Khan, Salman A. & Rehman, Shafiqur, 2013. "Iterative non-deterministic algorithms in on-shore wind farm design: A brief survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 370-384.
    9. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    10. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    11. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    12. Turner, S.D.O. & Romero, D.A. & Zhang, P.Y. & Amon, C.H. & Chan, T.C.Y., 2014. "A new mathematical programming approach to optimize wind farm layouts," Renewable Energy, Elsevier, vol. 63(C), pages 674-680.
    13. Wagner, Markus & Day, Jareth & Neumann, Frank, 2013. "A fast and effective local search algorithm for optimizing the placement of wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 64-70.
    14. Gu, Huajie & Wang, Jun, 2013. "Irregular-shape wind farm micro-siting optimization," Energy, Elsevier, vol. 57(C), pages 535-544.
    15. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    16. Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
    17. Saavedra-Moreno, B. & Salcedo-Sanz, S. & Paniagua-Tineo, A. & Prieto, L. & Portilla-Figueras, A., 2011. "Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms," Renewable Energy, Elsevier, vol. 36(11), pages 2838-2844.
    18. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    19. José F. Herbert-Acero & Oliver Probst & Pierre-Elouan Réthoré & Gunner Chr. Larsen & Krystel K. Castillo-Villar, 2014. "A Review of Methodological Approaches for the Design and Optimization of Wind Farms," Energies, MDPI, vol. 7(11), pages 1-87, October.
    20. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Mengxuan & Chen, Kai & Wang, Jun, 2020. "A two-level approach for three-dimensional micro-siting optimization of large-scale wind farms," Energy, Elsevier, vol. 190(C).
    2. Yu, Xiaobing & Lu, Yangchen, 2023. "Reinforcement learning-based multi-objective differential evolution for wind farm layout optimization," Energy, Elsevier, vol. 284(C).
    3. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    4. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    5. Al-Masri, Hussein M.K. & AbuElrub, Ahmad & Almehizia, Abdullah A. & Ehsani, Mehrdad, 2019. "Multi-figure of merit optimization for global scale sustainable power systems," Renewable Energy, Elsevier, vol. 134(C), pages 538-549.
    6. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    7. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    8. Eikrem, Kjersti Solberg & Lorentzen, Rolf Johan & Faria, Ricardo & Stordal, Andreas Størksen & Godard, Alexandre, 2023. "Offshore wind farm layout optimization using ensemble methods," Renewable Energy, Elsevier, vol. 216(C).
    9. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    10. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús Manuel, 2018. "Optimal design of neighbouring offshore wind farms: A co-evolutionary approach," Applied Energy, Elsevier, vol. 209(C), pages 140-152.
    11. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    12. Thebelt, Alexander & Tsay, Calvin & Lee, Robert M. & Sudermann-Merx, Nathan & Walz, David & Tranter, Tom & Misener, Ruth, 2022. "Multi-objective constrained optimization for energy applications via tree ensembles," Applied Energy, Elsevier, vol. 306(PB).
    13. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    15. Wang, Long & Wu, Jianghai & Wang, Tongguang & Han, Ran, 2020. "An optimization method based on random fork tree coding for the electrical networks of offshore wind farms," Renewable Energy, Elsevier, vol. 147(P1), pages 1340-1351.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    3. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
    4. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    5. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    6. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    7. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    8. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    9. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    10. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    11. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    12. Wang, Longyan & Cholette, Michael E. & Tan, Andy C.C. & Gu, Yuantong, 2017. "A computationally-efficient layout optimization method for real wind farms considering altitude variations," Energy, Elsevier, vol. 132(C), pages 147-159.
    13. DuPont, Bryony & Cagan, Jonathan & Moriarty, Patrick, 2016. "An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm," Energy, Elsevier, vol. 106(C), pages 802-814.
    14. Salcedo-Sanz, S. & Gallo-Marazuela, D. & Pastor-Sánchez, A. & Carro-Calvo, L. & Portilla-Figueras, A. & Prieto, L., 2014. "Offshore wind farm design with the Coral Reefs Optimization algorithm," Renewable Energy, Elsevier, vol. 63(C), pages 109-115.
    15. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
    16. Chen, K. & Song, M.X. & Zhang, X. & Wang, S.F., 2016. "Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm," Renewable Energy, Elsevier, vol. 96(PA), pages 676-686.
    17. Yamani Douzi Sorkhabi, Sami & Romero, David A. & Yan, Gary Kai & Gu, Michelle Dao & Moran, Joaquin & Morgenroth, Michael & Amon, Cristina H., 2016. "The impact of land use constraints in multi-objective energy-noise wind farm layout optimization," Renewable Energy, Elsevier, vol. 85(C), pages 359-370.
    18. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2018. "Continuous adjoint formulation for wind farm layout optimization: A 2D implementation," Applied Energy, Elsevier, vol. 228(C), pages 2333-2345.
    19. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
    20. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:587-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.