IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v299y2022i1p137-153.html
   My bibliography  Save this article

Iterated dynamic thresholding search for packing equal circles into a circular container

Author

Listed:
  • Lai, Xiangjing
  • Hao, Jin-Kao
  • Yue, Dong
  • Lü, Zhipeng
  • Fu, Zhang-Hua

Abstract

Packing equal circles in a circle is a classic global optimization problem that has a rich research history and a number of relevant applications. The problem is computationally challenging due to the fact that the number of possible packing configurations grows exponentially with the number of circles. In this work, we propose a highly effective iterated dynamic thresholding search algorithm for solving this difficult problem. The algorithm integrates several features including a two-phase local optimization method, a dynamic thresholding search and a container adjustment procedure. Computational experiments on popular benchmark instances with up to N=320 circles show that the algorithm outperforms significantly the state-of-the-art algorithms. In particular, it improves the best-known results for 136 instances, while matching the best-known results for other 175 instances.

Suggested Citation

  • Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong & Lü, Zhipeng & Fu, Zhang-Hua, 2022. "Iterated dynamic thresholding search for packing equal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 299(1), pages 137-153.
  • Handle: RePEc:eee:ejores:v:299:y:2022:i:1:p:137-153
    DOI: 10.1016/j.ejor.2021.08.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721007360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.08.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Igor Litvinchev & Edith Lucero Ozuna Espinosa, 2014. "Integer Programming Formulations for Approximate Packing Circles in a Rectangular Container," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, March.
    2. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
    3. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
    4. Y G Stoyan & M V Zlotnik & A M Chugay, 2012. "Solving an optimization packing problem of circles and non-convex polygons with rotations into a multiply connected region," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(3), pages 379-391, March.
    5. Wang, Huaiqing & Huang, Wenqi & Zhang, Quan & Xu, Dongming, 2002. "An improved algorithm for the packing of unequal circles within a larger containing circle," European Journal of Operational Research, Elsevier, vol. 141(2), pages 440-453, September.
    6. Anthony V. Fiacco & Garth P. McCormick, 1964. "Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming," Management Science, INFORMS, vol. 10(4), pages 601-617, July.
    7. Hifi, M. & M'Hallah, R., 2007. "A dynamic adaptive local search algorithm for the circular packing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1280-1294, December.
    8. Galiev, Shamil I. & Lisafina, Maria S., 2013. "Linear models for the approximate solution of the problem of packing equal circles into a given domain," European Journal of Operational Research, Elsevier, vol. 230(3), pages 505-514.
    9. López, C.O. & Beasley, J.E., 2016. "A formulation space search heuristic for packing unequal circles in a fixed size circular container," European Journal of Operational Research, Elsevier, vol. 251(1), pages 64-73.
    10. B. Addis & M. Locatelli & F. Schoen, 2008. "Disk Packing in a Square: A New Global Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 516-524, November.
    11. López, C.O. & Beasley, J.E., 2011. "A heuristic for the circle packing problem with a variety of containers," European Journal of Operational Research, Elsevier, vol. 214(3), pages 512-525, November.
    12. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    13. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    14. Toledo, Franklina M.B. & Carravilla, Maria Antónia & Ribeiro, Cristina & Oliveira, José F. & Gomes, A. Miguel, 2013. "The Dotted-Board Model: A new MIP model for nesting irregular shapes," International Journal of Production Economics, Elsevier, vol. 145(2), pages 478-487.
    15. Huang, Wenqi & Ye, Tao, 2011. "Global optimization method for finding dense packings of equal circles in a circle," European Journal of Operational Research, Elsevier, vol. 210(3), pages 474-481, May.
    16. A. Grosso & A. Jamali & M. Locatelli & F. Schoen, 2010. "Solving the problem of packing equal and unequal circles in a circular container," Journal of Global Optimization, Springer, vol. 47(1), pages 63-81, May.
    17. Jonathan P. K. Doye & Robert H. Leary & Marco Locatelli & Fabio Schoen, 2004. "Global Optimization of Morse Clusters by Potential Energy Transformations," INFORMS Journal on Computing, INFORMS, vol. 16(4), pages 371-379, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papp, Dávid & Regős, Krisztina & Domokos, Gábor & Bozóki, Sándor, 2023. "The smallest mono-unstable convex polyhedron with point masses has 8 faces and 11 vertices," European Journal of Operational Research, Elsevier, vol. 310(2), pages 511-517.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yingcong & Wang, Yanfeng & Sun, Junwei & Huang, Chun & Zhang, Xuncai, 2019. "A stimulus–response-based allocation method for the circle packing problem with equilibrium constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 232-247.
    2. Xiangjing Lai & Jin-Kao Hao & Renbin Xiao & Fred Glover, 2023. "Perturbation-Based Thresholding Search for Packing Equal Circles and Spheres," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 725-746, July.
    3. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
    4. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
    5. López, C.O. & Beasley, J.E., 2016. "A formulation space search heuristic for packing unequal circles in a fixed size circular container," European Journal of Operational Research, Elsevier, vol. 251(1), pages 64-73.
    6. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    7. I Al-Mudahka & M Hifi & R M'Hallah, 2011. "Packing circles in the smallest circle: an adaptive hybrid algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1917-1930, November.
    8. Bouzid, Mouaouia Cherif & Salhi, Said, 2020. "Packing rectangles into a fixed size circular container: Constructive and metaheuristic search approaches," European Journal of Operational Research, Elsevier, vol. 285(3), pages 865-883.
    9. Huang, Wenqi & Ye, Tao, 2011. "Global optimization method for finding dense packings of equal circles in a circle," European Journal of Operational Research, Elsevier, vol. 210(3), pages 474-481, May.
    10. Zhu, Dingju, 2016. "Quasi-human seniority-order algorithm for unequal circles packing," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 506-517.
    11. Zhengguan Dai & Kathleen Xu & Melkior Ornik, 2021. "Repulsion-based p-dispersion with distance constraints in non-convex polygons," Annals of Operations Research, Springer, vol. 307(1), pages 75-91, December.
    12. Xinyun Wu & Shengfeng Yan & Xin Wan & Zhipeng Lü, 2016. "Multi-neighborhood based iterated tabu search for routing and wavelength assignment problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 445-468, August.
    13. Galiev, Shamil I. & Lisafina, Maria S., 2013. "Linear models for the approximate solution of the problem of packing equal circles into a given domain," European Journal of Operational Research, Elsevier, vol. 230(3), pages 505-514.
    14. Liu, Jingfa & Jiang, Yucong & Li, Gang & Xue, Yu & Liu, Zhaoxia & Zhang, Zhen, 2015. "Heuristic-based energy landscape paving for the circular packing problem with performance constraints of equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 166-174.
    15. Ryu, Joonghyun & Lee, Mokwon & Kim, Donguk & Kallrath, Josef & Sugihara, Kokichi & Kim, Deok-Soo, 2020. "VOROPACK-D: Real-time disk packing algorithm using Voronoi diagram," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    16. A. Grosso & A. Jamali & M. Locatelli & F. Schoen, 2010. "Solving the problem of packing equal and unequal circles in a circular container," Journal of Global Optimization, Springer, vol. 47(1), pages 63-81, May.
    17. Xiangyang Huang & LiGuo Huang, 2023. "Spreading Points Using Gradient and Tabu," SN Operations Research Forum, Springer, vol. 4(2), pages 1-11, June.
    18. Josef Kallrath & Joonghyun Ryu & Chanyoung Song & Mokwon Lee & Deok-Soo Kim, 2021. "Near optimal minimal convex hulls of disks," Journal of Global Optimization, Springer, vol. 80(3), pages 551-594, July.
    19. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    20. Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:299:y:2022:i:1:p:137-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.