IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v73y2019i3d10.1007_s10898-018-0711-5.html
   My bibliography  Save this article

Rigorous packing of unit squares into a circle

Author

Listed:
  • Tiago Montanher

    (Wolfgang Pauli Institute
    University of Vienna)

  • Arnold Neumaier

    (University of Vienna)

  • Mihály Csaba Markót

    (Wolfgang Pauli Institute
    University of Vienna)

  • Ferenc Domes

    (University of Vienna)

  • Hermann Schichl

    (University of Vienna)

Abstract

This paper considers the task of finding the smallest circle into which one can pack a fixed number of non-overlapping unit squares that are free to rotate. Due to the rotation angles, the packing of unit squares into a container is considerably harder to solve than their circle packing counterparts. Therefore, optimal arrangements were so far proved to be optimal only for one or two unit squares. By a computer-assisted method based on interval arithmetic techniques, we solve the case of three squares and find rigorous enclosures for every optimal arrangement of this problem. We model the relation between the squares and the circle as a constraint satisfaction problem (CSP) and found every box that may contain a solution inside a given upper bound of the radius. Due to symmetries in the search domain, general purpose interval methods are far too slow to solve the CSP directly. To overcome this difficulty, we split the problem into a set of subproblems by systematically adding constraints to the center of each square. Our proof requires the solution of 6, 43 and 12 subproblems with 1, 2 and 3 unit squares respectively. In principle, the method proposed in this paper generalizes to any number of squares.

Suggested Citation

  • Tiago Montanher & Arnold Neumaier & Mihály Csaba Markót & Ferenc Domes & Hermann Schichl, 2019. "Rigorous packing of unit squares into a circle," Journal of Global Optimization, Springer, vol. 73(3), pages 547-565, March.
  • Handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0711-5
    DOI: 10.1007/s10898-018-0711-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0711-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0711-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Josef Kallrath & Steffen Rebennack, 2014. "Cutting ellipses from area-minimizing rectangles," Journal of Global Optimization, Springer, vol. 59(2), pages 405-437, July.
    2. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2016. "Packing ellipsoids by nonlinear optimization," Journal of Global Optimization, Springer, vol. 65(4), pages 709-743, August.
    3. E G Birgin & J M Martínez & W F Mascarenhas & D P Ronconi, 2006. "Method of sentinels for packing items within arbitrary convex regions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 735-746, June.
    4. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2017. "A nonlinear programming model with implicit variables for packing ellipsoids," Journal of Global Optimization, Springer, vol. 68(3), pages 467-499, July.
    5. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2020. "Packing ovals in optimized regular polygons," Journal of Global Optimization, Springer, vol. 77(1), pages 175-196, May.
    2. Birgin, E.G. & Lobato, R.D., 2019. "A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids," European Journal of Operational Research, Elsevier, vol. 272(2), pages 447-464.
    3. A. Pankratov & T. Romanova & I. Litvinchev, 2019. "Packing ellipses in an optimized convex polygon," Journal of Global Optimization, Springer, vol. 75(2), pages 495-522, October.
    4. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2017. "A nonlinear programming model with implicit variables for packing ellipsoids," Journal of Global Optimization, Springer, vol. 68(3), pages 467-499, July.
    5. Romanova, Tatiana & Litvinchev, Igor & Pankratov, Alexander, 2020. "Packing ellipsoids in an optimized cylinder," European Journal of Operational Research, Elsevier, vol. 285(2), pages 429-443.
    6. Ryu, Joonghyun & Lee, Mokwon & Kim, Donguk & Kallrath, Josef & Sugihara, Kokichi & Kim, Deok-Soo, 2020. "VOROPACK-D: Real-time disk packing algorithm using Voronoi diagram," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    7. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2016. "Packing ellipsoids by nonlinear optimization," Journal of Global Optimization, Springer, vol. 65(4), pages 709-743, August.
    8. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
    9. T. Kubach & A. Bortfeldt & H. Gehring, 2009. "Parallel greedy algorithms for packing unequal circles into a strip or a rectangle," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 461-477, December.
    10. I Al-Mudahka & M Hifi & R M'Hallah, 2011. "Packing circles in the smallest circle: an adaptive hybrid algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1917-1930, November.
    11. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    12. Galiev, Shamil I. & Lisafina, Maria S., 2013. "Linear models for the approximate solution of the problem of packing equal circles into a given domain," European Journal of Operational Research, Elsevier, vol. 230(3), pages 505-514.
    13. Giorgio Fasano, 2013. "A global optimization point of view to handle non-standard object packing problems," Journal of Global Optimization, Springer, vol. 55(2), pages 279-299, February.
    14. János Pintér & Zoltán Horváth, 2013. "Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints," Journal of Global Optimization, Springer, vol. 57(1), pages 191-215, September.
    15. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong & Lü, Zhipeng & Fu, Zhang-Hua, 2022. "Iterated dynamic thresholding search for packing equal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 299(1), pages 137-153.
    16. Xiangyang Huang & LiGuo Huang, 2023. "Spreading Points Using Gradient and Tabu," SN Operations Research Forum, Springer, vol. 4(2), pages 1-11, June.
    17. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
    18. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    19. Hinostroza, Ignacio & Pradenas, Lorena & Parada, Víctor, 2013. "Board cutting from logs: Optimal and heuristic approaches for the problem of packing rectangles in a circle," International Journal of Production Economics, Elsevier, vol. 145(2), pages 541-546.
    20. Aloïs Duguet & Christian Artigues & Laurent Houssin & Sandra Ulrich Ngueveu, 2022. "Properties, Extensions and Application of Piecewise Linearization for Euclidean Norm Optimization in $$\mathbb {R}^2$$ R 2," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 418-448, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0711-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.