IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i4d10.1007_s10898-018-0637-y.html
   My bibliography  Save this article

A customized branch-and-bound approach for irregular shape nesting

Author

Listed:
  • Akang Wang

    (Carnegie Mellon University)

  • Christopher L. Hanselman

    (Carnegie Mellon University)

  • Chrysanthos E. Gounaris

    (Carnegie Mellon University)

Abstract

We study the Nesting Problem, which aims to determine a configuration of a set of irregular shapes within a rectangular sheet of material of fixed width, such that no overlap among the shapes exists, and such that the length of the sheet is minimized. When both translation and rotation of the shapes are allowed, the problem can be formulated as a nonconvex quadratically constrained programming model that approximates each shape by a set of inscribed circles and enforces that circle pairs stemming from different shapes do not overlap. However, despite many recent advances in today’s global optimization solvers, solving this nonconvex model to guaranteed optimality remains extremely challenging even for the state-of-the-art codes. In this paper, we propose a customized branch-and-bound approach to address the Nesting Problem to guaranteed optimality. Our approach utilizes a novel branching scheme to deal with the reverse convex quadratic constraints in the quadratic model and incorporates a number of problem-specific algorithmic tweaks. Our computational studies on a suite of 64 benchmark instances demonstrate the customized algorithm’s effectiveness and competitiveness over the use of general-purpose global optimization solvers, including for the first time the ability to find global optimal nestings featuring five polygons under free rotation.

Suggested Citation

  • Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:4:d:10.1007_s10898-018-0637-y
    DOI: 10.1007/s10898-018-0637-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0637-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0637-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherri, Luiz H. & Mundim, Leandro R. & Andretta, Marina & Toledo, Franklina M.B. & Oliveira, José F. & Carravilla, Maria Antónia, 2016. "Robust mixed-integer linear programming models for the irregular strip packing problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 570-583.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. Bortfeldt, Andreas, 2006. "A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces," European Journal of Operational Research, Elsevier, vol. 172(3), pages 814-837, August.
    4. Donald Jones, 2014. "A fully general, exact algorithm for nesting irregular shapes," Journal of Global Optimization, Springer, vol. 59(2), pages 367-404, July.
    5. Gomes, A. Miguel & Oliveira, Jose F., 2006. "Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming," European Journal of Operational Research, Elsevier, vol. 171(3), pages 811-829, June.
    6. Bennell, Julia A. & Oliveira, Jose F., 2008. "The geometry of nesting problems: A tutorial," European Journal of Operational Research, Elsevier, vol. 184(2), pages 397-415, January.
    7. Edmund Burke & Robert Hellier & Graham Kendall & Glenn Whitwell, 2006. "A New Bottom-Left-Fill Heuristic Algorithm for the Two-Dimensional Irregular Packing Problem," Operations Research, INFORMS, vol. 54(3), pages 587-601, June.
    8. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    9. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    2. Germán Pantoja-Benavides & David Álvarez-Martínez & Francisco Parreño Torres, 2024. "The Normalized Direct Trigonometry Model for the Two-Dimensional Irregular Strip Packing Problem," Mathematics, MDPI, vol. 12(15), pages 1-25, August.
    3. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    4. Longhui Meng & Liang Ding & Aqib Mashood Khan & Ray Tahir Mushtaq & Mohammed Alkahtani, 2024. "Optimizing Two-Dimensional Irregular Pattern Packing with Advanced Overlap Optimization Techniques," Mathematics, MDPI, vol. 12(17), pages 1-19, August.
    5. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    6. Akang Wang & Chrysanthos E. Gounaris, 2021. "On tackling reverse convex constraints for non-overlapping of unequal circles," Journal of Global Optimization, Springer, vol. 80(2), pages 357-385, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    2. Igor Kierkosz & Maciej Łuczak, 2019. "A one-pass heuristic for nesting problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 37-60.
    3. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    4. Demiröz, Barış Evrim & Altınel, İ. Kuban & Akarun, Lale, 2019. "Rectangle blanket problem: Binary integer linear programming formulation and solution algorithms," European Journal of Operational Research, Elsevier, vol. 277(1), pages 62-83.
    5. Miguel Santoro & Felipe Lemos, 2015. "Irregular packing: MILP model based on a polygonal enclosure," Annals of Operations Research, Springer, vol. 235(1), pages 693-707, December.
    6. Cherri, Luiz Henrique & Carravilla, Maria Antónia & Ribeiro, Cristina & Toledo, Franklina Maria Bragion, 2019. "Optimality in nesting problems: New constraint programming models and a new global constraint for non-overlap," Operations Research Perspectives, Elsevier, vol. 6(C).
    7. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    8. J A Bennell & J F Oliveira, 2009. "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 93-105, May.
    9. E. K. Burke & R. S. R. Hellier & G. Kendall & G. Whitwell, 2010. "Irregular Packing Using the Line and Arc No-Fit Polygon," Operations Research, INFORMS, vol. 58(4-part-1), pages 948-970, August.
    10. Cherri, Luiz H. & Mundim, Leandro R. & Andretta, Marina & Toledo, Franklina M.B. & Oliveira, José F. & Carravilla, Maria Antónia, 2016. "Robust mixed-integer linear programming models for the irregular strip packing problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 570-583.
    11. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    12. Luiz H. Cherri & Adriana C. Cherri & Edilaine M. Soler, 2018. "Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations," Journal of Global Optimization, Springer, vol. 72(1), pages 89-107, September.
    13. Kimms, Alf & Király, Hédi, 2023. "An extended model formulation for the two-dimensional irregular strip packing problem considering general industry-relevant aspects," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1202-1218.
    14. Germán Pantoja-Benavides & David Álvarez-Martínez & Francisco Parreño Torres, 2024. "The Normalized Direct Trigonometry Model for the Two-Dimensional Irregular Strip Packing Problem," Mathematics, MDPI, vol. 12(15), pages 1-25, August.
    15. Eunice López-Camacho & Gabriela Ochoa & Hugo Terashima-Marín & Edmund Burke, 2013. "An effective heuristic for the two-dimensional irregular bin packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 241-264, July.
    16. Josef Kallrath & Joonghyun Ryu & Chanyoung Song & Mokwon Lee & Deok-Soo Kim, 2021. "Near optimal minimal convex hulls of disks," Journal of Global Optimization, Springer, vol. 80(3), pages 551-594, July.
    17. Umetani, Shunji & Murakami, Shohei, 2022. "Coordinate descent heuristics for the irregular strip packing problem of rasterized shapes," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1009-1026.
    18. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2023. "Model Development and Solver Demonstrations Using Randomized Test Problems," SN Operations Research Forum, Springer, vol. 4(1), pages 1-15, March.
    19. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    20. Martinez-Sykora, A. & Alvarez-Valdes, R. & Bennell, J.A. & Ruiz, R. & Tamarit, J.M., 2017. "Matheuristics for the irregular bin packing problem with free rotations," European Journal of Operational Research, Elsevier, vol. 258(2), pages 440-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:4:d:10.1007_s10898-018-0637-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.