My bibliography
Save this item
Measuring volatility with the realized range
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cathy W. S. Chen & Takaaki Koike & Wei‐Hsuan Shau, 2024. "Tail risk forecasting with semiparametric regression models by incorporating overnight information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1492-1512, August.
- Cathy W. S. Chen & Takaaki Koike & Wei-Hsuan Shau, 2024. "Tail risk forecasting with semi-parametric regression models by incorporating overnight information," Papers 2402.07134, arXiv.org.
- Gagan Deep Sharma & Mandeep Mahendru & Mrinalini Srivastava, 2019. "Can Central Banking Policies Make a Difference in Financial Market Performance in Emerging Economies? The Case of India," Economies, MDPI, vol. 7(2), pages 1-19, May.
- Neil Shephard & Ole E. Barndorff-Nielsen & Department of Mathematical Sciences & University of Aarhus & Denmark, 2005.
"Variation, jumps, market frictions and high frequency data in financial econometrics,"
Economics Series Working Papers
240, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
- Jui-Cheng Hung & Tien-Wei Lou & Yi-Hsien Wang & Jun-De Lee, 2013. "Evaluating and improving GARCH-based volatility forecasts with range-based estimators," Applied Economics, Taylor & Francis Journals, vol. 45(28), pages 4041-4049, October.
- Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
- Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
- Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
- Hallin, Marc & La Vecchia, Davide, 2020.
"A Simple R-estimation method for semiparametric duration models,"
Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
- Marc Hallin & Davide La Vecchia, 2017. "A Simple R-Estimation Method for Semiparametric Duration Models," Working Papers ECARES ECARES 2017-01, ULB -- Universite Libre de Bruxelles.
- Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013.
"The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
- Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2009.
"Forecasting realized (co)variances with a block structure Wishart autoregressive model,"
Working Papers
2009-03, Swiss National Bank.
- Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Forecasting Realized (Co)Variances with a Bloc Structure Wishart Autoregressive Model," Working Papers on Finance 1211, University of St. Gallen, School of Finance.
- Fu, Jin-Yu & Lin, Jin-Guan & Hao, Hong-Xia, 2023. "Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1698-1712.
- Liu, Qiang & Liu, Yiqi & Liu, Zhi & Wang, Li, 2018. "Estimation of spot volatility with superposed noisy data," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 62-79.
- Ruben Hipp, 2020. "On Causal Networks of Financial Firms: Structural Identification via Non-parametric Heteroskedasticity," Staff Working Papers 20-42, Bank of Canada.
- repec:ipg:wpaper:2014-500 is not listed on IDEAS
- Pierre Chausse & Dinghai Xu, 2012. "GMM Estimation of a Stochastic Volatility Model with Realized Volatility: A Monte Carlo Study," Working Papers 1203, University of Waterloo, Department of Economics, revised May 2012.
- Alex Frino & Caihong Xu & Z. Ivy Zhou, 2022. "Are option traders more informed than Twitter users? A PVAR analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1755-1771, September.
- Rangika Peiris & Chao Wang & Richard Gerlach & Minh-Ngoc Tran, 2024. "Semi-parametric financial risk forecasting incorporating multiple realized measures," Papers 2402.09985, arXiv.org, revised Dec 2024.
- Neil Shephard & Kevin Sheppard, 2012.
"Efficient and feasible inference for the components of financial variation using blocked multipower variation,"
Economics Series Working Papers
593, University of Oxford, Department of Economics.
- Per A. Mykland & Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Papers 2012-W02, Economics Group, Nuffield College, University of Oxford.
- Massimiliano Caporin & Gabriel G. Velo, 2011. "Modeling and forecasting realized range volatility," "Marco Fanno" Working Papers 0128, Dipartimento di Scienze Economiche "Marco Fanno".
- Mark Podolskij & Daniel Ziggel, 2007.
"A Range-Based Test for the Parametric Form of the Volatility in Diffusion Models,"
CREATES Research Papers
2007-26, Department of Economics and Business Economics, Aarhus University.
- Mark Podolskij & Daniel Ziggel, 2008. "A Range-Based Test for the Parametric Form of the Volatility in Diffusion Models," CREATES Research Papers 2008-22, Department of Economics and Business Economics, Aarhus University.
- Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006.
"Limit Theorems For Bipower Variation In Financial Econometrics,"
Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
- Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," Economics Papers 2005-W06, Economics Group, Nuffield College, University of Oxford.
- Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
- Shao, Xi-Dong & Lian, Yu-Jun & Yin, Lian-Qian, 2009. "Forecasting Value-at-Risk using high frequency data: The realized range model," Global Finance Journal, Elsevier, vol. 20(2), pages 128-136.
- Caiya Zhang & Kaihong Xu & Lianfen Qian, 2020. "Asymptotic properties of the QMLE in a log-linear RealGARCH model with Gaussian errors," Statistical Papers, Springer, vol. 61(6), pages 2313-2330, December.
- Divya Gupta & Usha Kamilla, 2015. "Dynamic Linkages between Implied Volatility Indices of Developed and Emerging Financial Markets: An Econometric Approach," Global Business Review, International Management Institute, vol. 16(5_suppl), pages 46-57, October.
- Huisman, Ronald & van der Sar, Nico L. & Zwinkels, Remco C.J., 2012. "A new measurement method of investor overconfidence," Economics Letters, Elsevier, vol. 114(1), pages 69-71.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Venter, J.H. & de Jongh, P.J., 2014. "Extended stochastic volatility models incorporating realised measures," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 687-707.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Bazán-Palomino, Walter, 2023. "The increased interest in Bitcoin and the immediate and long-term impact of Bitcoin volatility on global stock markets," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1080-1095.
- Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Yaojie Zhang & Mengxi He & Zhikai Zhang, 2024. "Forecasting stock returns with industry volatility concentration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2705-2730, November.
- Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
- Liao, Yin & Anderson, Heather M., 2019.
"Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices,"
Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
- Yin Liao & Heather M. Anderson, 2011. "Testing for co-jumps in high-frequency financial data: an approach based on first-high-low-last prices," Monash Econometrics and Business Statistics Working Papers 9/11, Monash University, Department of Econometrics and Business Statistics.
- Gustavo Fruet Dias & Karsten Schweiker, 2024. "Integrated Variance Estimation for Assets Traded in Multiple Venues," University of East Anglia School of Economics Working Paper Series 2024-04, School of Economics, University of East Anglia, Norwich, UK..
- Dirk G. Baur & Thomas Dimpfl, 2021. "The volatility of Bitcoin and its role as a medium of exchange and a store of value," Empirical Economics, Springer, vol. 61(5), pages 2663-2683, November.
- Juan M. Londono, 2011. "The variance risk premium around the world," International Finance Discussion Papers 1035, Board of Governors of the Federal Reserve System (U.S.).
- Okou, Cédric & Jacquier, Éric, 2016. "Horizon effect in the term structure of long-run risk-return trade-offs," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 445-466.
- Aris Kartsaklas, 2018. "Trader Type Effects On The Volatility‐Volume Relationship Evidence From The Kospi 200 Index Futures Market," Bulletin of Economic Research, Wiley Blackwell, vol. 70(3), pages 226-250, July.
- Neda Todorova, 2012. "Volatility estimators based on daily price ranges versus the realized range," Applied Financial Economics, Taylor & Francis Journals, vol. 22(3), pages 215-229, February.
- Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
- Shay Kee Tan & Kok Haur Ng & Jennifer So-Kuen Chan, 2022. "Predicting Returns, Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models," Mathematics, MDPI, vol. 11(1), pages 1-24, December.
- Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
- Simard Clarence & Rémillard Bruno, 2015. "Forecasting time series with multivariate copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-24, May.
- Dinghai Xu & Yuying Li, 2010. "Empirical Evidence of the Leverage Effect in a Stochastic Volatility Model: A Realized Volatility Approach," Working Papers 1002, University of Waterloo, Department of Economics, revised May 2010.
- Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
- Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
- Ozgur (Ozzy) Akay & Mark D. Griffiths & Drew B. Winters, 2010. "On The Robustness Of Range‐Based Volatility Estimators," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(2), pages 179-199, June.
- Sutton, Maxwell & Vasnev, Andrey L. & Gerlach, Richard, 2019. "Mixed interval realized variance: A robust estimator of stock price volatility," Econometrics and Statistics, Elsevier, vol. 11(C), pages 43-62.
- Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
- Michael McAleer & Marcelo Medeiros, 2008.
"Realized Volatility: A Review,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
- Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
- Bentes, Sonia R & Menezes, Rui, 2012. "On the predictive power of implied volatility indexes: A comparative analysis with GARCH forecasted volatility," MPRA Paper 42193, University Library of Munich, Germany.
- Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
- Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
- Dinghai Xu, 2010. "A Threshold Stochastic Volatility Model with Realized Volatility," Working Papers 1003, University of Waterloo, Department of Economics, revised May 2010.
- Alex Frino & Michael Garcia, 2018. "Should macroeconomic information be released during trading breaks in futures markets?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(7), pages 775-787, July.
- Koutmos, Dimitrios & Song, Wei, 2014. "Speculative dynamics and price behavior in the Shanghai Stock Exchange," Research in International Business and Finance, Elsevier, vol. 31(C), pages 74-86.
- Chao Wang & Qian Chen & Richard Gerlach, 2017. "Bayesian Realized-GARCH Models for Financial Tail Risk Forecasting Incorporating Two-sided Weibull Distribution," Papers 1707.03715, arXiv.org.
- Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
- repec:pse:psecon:2007-11 is not listed on IDEAS
- Hiroyuki Kawakatsu, 2021. "Information in daily data volatility measurements," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1642-1656, April.
- I‐Ming Jiang & Jui‐Cheng Hung & Chuan‐San Wang, 2014. "Volatility Forecasts: Do Volatility Estimators and Evaluation Methods Matter?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(11), pages 1077-1094, November.
- Cathy Ning & Dinghai Xu & Tony Wirjanto, 2009.
"Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data,"
Working Papers
006, Toronto Metropolitan University, Department of Economics.
- Cathy Ning & Dinghai Xu & Tony Wirjanto, 2010. "Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data," Working Papers 1001, University of Waterloo, Department of Economics, revised Jan 2010.
- Reboredo, Juan C., 2014. "Volatility spillovers between the oil market and the European Union carbon emission market," Economic Modelling, Elsevier, vol. 36(C), pages 229-234.
- Koutmos, Dimitrios, 2016. "Distilling private information from plain-vanilla options to predict future underlying stock price volatility: Evidence from the H-shares of Chinese banks," Research in International Business and Finance, Elsevier, vol. 37(C), pages 391-405.
- Tseng Tseng-Chan & Chung Huimin & Huang Chin-Sheng, 2009. "Modeling Jump and Continuous Components in the Volatility of Oil Futures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-30, May.
- Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
- Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019.
"Do High-frequency-based Measures Improve Conditional Covariance Forecasts?,"
Post-Print
hal-03331122, HAL.
- Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013.
"On the predictability of stock prices: A case for high and low prices,"
Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
- Massimiliano Caporin & Angelo Ranaldo, 2011. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers 2011-11, Swiss National Bank.
- Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2012. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers on Finance 1213, University of St. Gallen, School of Finance.
- Massimiliano Caporin & Angelo Ranaldo & Paolo Santucci de Magistris, 2011. "On the Predictability of Stock Prices: A Case for High and Low Prices," "Marco Fanno" Working Papers 0136, Dipartimento di Scienze Economiche "Marco Fanno".
- Gilles Truchis & Benjamin Keddad, 2016.
"Long-Run Comovements in East Asian Stock Market Volatility,"
Open Economies Review, Springer, vol. 27(5), pages 969-986, November.
- Gilles de Truchis & Benjamin Keddad, 2016. "Long-Run Comovements in East Asian Stock Market Volatility," Post-Print hal-01549713, HAL.
- Xie, Haibin & Qi, Nan & Wang, Shouyang, 2019. "A new variant of RealGARCH for volatility modeling," Finance Research Letters, Elsevier, vol. 28(C), pages 438-443.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Harris, Richard D.F. & Yilmaz, Fatih, 2010. "Estimation of the conditional variance-covariance matrix of returns using the intraday range," International Journal of Forecasting, Elsevier, vol. 26(1), pages 180-194, January.
- Korkusuz, Burak & Kambouroudis, Dimos & McMillan, David G., 2023. "Do extreme range estimators improve realized volatility forecasts? Evidence from G7 Stock Markets," Finance Research Letters, Elsevier, vol. 55(PB).
- Golez, Benjamin & Jackwerth, Jens Carsten, 2012.
"Pinning in the S&P 500 futures,"
Journal of Financial Economics, Elsevier, vol. 106(3), pages 566-585.
- Benjamin Golez & Jens Carsten Jackwerth, 2010. "Pinning in the S&P 500 Futures," Working Paper Series of the Department of Economics, University of Konstanz 2010-12, Department of Economics, University of Konstanz.
- Wu, Chih-Chiang & Liang, Shin-Shun, 2011. "The economic value of range-based covariance between stock and bond returns with dynamic copulas," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 711-727, September.
- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Vortelinos, Dimitrios I., 2014. "Optimally sampled realized range-based volatility estimators," Research in International Business and Finance, Elsevier, vol. 30(C), pages 34-50.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Svetlana Lapinova & Alexander Saichev & Maria Tarakanova, 2012. "Volatility estimation based on extremes of the bridge (in Russian)," Quantile, Quantile, issue 10, pages 73-90, December.
- Vortelinos, Dimitrios I., 2016. "Incremental information of stock indicators," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 79-97.
- Lin, Xiaoqiang & Fei, Fangyu & Wang, Yudong, 2011. "Analysis of the efficiency of the Shanghai stock market: A volatility perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3486-3495.
- Stefano Lovo & Philippe Raimbourg & Federica Salvadè, 2022.
"Credit rating agencies, information asymmetry and US bond liquidity,"
Journal of Business Finance & Accounting, Wiley Blackwell, vol. 49(9-10), pages 1863-1896, October.
- Stefano Lovo & Philippe Raimbourg & Federica Salvadè, 2022. "Credit Rating Agencies, Information Asymmetry and US Bond Liquidity," Working Papers hal-03890565, HAL.
- Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
- Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2015.
"Is volatility clustering of asset returns asymmetric?,"
Journal of Banking & Finance, Elsevier, vol. 52(C), pages 62-76.
- Cathy Ning & Dinghai Xu & Tony Wirjanto, 2014. "Is Volatility Clustering of Asset Returns Asymmetric?," Working Papers 050, Toronto Metropolitan University, Department of Economics.
- Awartani, Basel & Maghyereh, Aktham Issa, 2013. "Dynamic spillovers between oil and stock markets in the Gulf Cooperation Council Countries," Energy Economics, Elsevier, vol. 36(C), pages 28-42.
- Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.
- Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Conditional jumps in volatility and their economic determinants," "Marco Fanno" Working Papers 0138, Dipartimento di Scienze Economiche "Marco Fanno".
- Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
- Fianu, Emmanuel Senyo & Ahelegbey, Daniel Felix & Grossi, Luigi, 2022.
"Modeling risk contagion in the Italian zonal electricity market,"
European Journal of Operational Research, Elsevier, vol. 298(2), pages 656-679.
- Daniel Felix Ahelegbey & Emmanuel Senyo Fianu & Luigi Grossi, 2020. "Modeling Risk Contagion in the Italian Zonal Electricity Market," DEM Working Papers Series 182, University of Pavia, Department of Economics and Management.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Wei Kuang, 2021. "Conditional covariance matrix forecast using the hybrid exponentially weighted moving average approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1398-1419, December.
- Vortelinos, Dimitrios I. & Lakshmi, Geeta, 2015. "Market risk of BRIC Eurobonds in the financial crisis period," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 295-310.
- Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
- Luca Barbaglia & Christophe Croux & Ines Wilms, 2017.
"Volatility spillovers and heavy tails: a large t-Vector AutoRegressive approach,"
Working Papers of Department of Decision Sciences and Information Management, Leuven
590528, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility Spillovers and Heavy Tails: A Large t-Vector AutoRegressive Approach," Papers 1708.02073, arXiv.org.
- Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
- Chou, Ray Yeutien & Liu, Nathan, 2010. "The economic value of volatility timing using a range-based volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2288-2301, November.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "Emerging versus developed volatility indices. The comparison of VIW20 and VIX indices," Working Papers 2009-11, Faculty of Economic Sciences, University of Warsaw.
- Theodoros M. Diasakos, 2011.
"A Simple Characterization of Dynamic Completeness in Continuous Time,"
Carlo Alberto Notebooks
211, Collegio Carlo Alberto.
- Theodoros M. Diasakos, 2012. "A Simple Characterization of Dynamic Completeness in Continuous Time," Discussion Paper Series, School of Economics and Finance 201312, School of Economics and Finance, University of St Andrews, revised 02 Sep 2013.
- Diasakos, Theodoros M, 2013. "A Simple Characterization of Dynamic Completeness in Continuous Time," SIRE Discussion Papers 2013-91, Scottish Institute for Research in Economics (SIRE).
- Bannouh, Karim & Martens, Martin & van Dijk, Dick, 2013.
"Forecasting volatility with the realized range in the presence of noise and non-trading,"
The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 535-551.
- Bannouh, K. & Martens, M.P.E. & van Dijk, D.J.C., 2012. "Forecasting Volatility with the Realized Range in the Presence of Noise and Non-Trading," ERIM Report Series Research in Management ERS-2012-018-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Sensoy, Ahmet & Uzun, Sevcan & Lucey, Brian M., 2021. "Commonality in FX liquidity: High-frequency evidence," Finance Research Letters, Elsevier, vol. 39(C).
- Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
- Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
- Benlagha, Noureddine & Chargui, Sana, 2017. "Range-based and GARCH volatility estimation: Evidence from the French asset market," Global Finance Journal, Elsevier, vol. 32(C), pages 149-165.
- Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
- Bannouh, K. & van Dijk, D.J.C. & Martens, M.P.E., 2008. "Range-based covariance estimation using high-frequency data: The realized co-range," Econometric Institute Research Papers EI 2007-53, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
- Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
- Marcel Aloy & Gilles de Truchis & Gilles Dufrénot & Benjamin Keddad, 2013.
"Shift-Volatility Transmission in East Asian Equity Markets,"
Working Papers
halshs-00935364, HAL.
- Marcel Aloy & Gilles de Truchis & Gilles Dufrénot & Benjamin Keddad, 2014. "Shift-Volatility Transmission in East Asian Equity Markets," AMSE Working Papers 1402, Aix-Marseille School of Economics, France, revised Mar 2014.
- Vallois, Pierre & Tapiero, Charles S., 2008. "Volatility estimators and the inverse range process in a random volatility random walk and Wiener processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2565-2574.
- Alexandr Kuchynka, 2008. "An empirical application of a two-factor model of stochastic volatility," Prague Economic Papers, Prague University of Economics and Business, vol. 2008(3), pages 243-253.
- Dimitrios I. Vortelinos & Dimitrios D. Thomakos, 2012.
"Realized volatility and jumps in the Athens Stock Exchange,"
Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 97-112, January.
- Dimitrios Vortelinos & Dimitrios Thomakos, 2009. "Realized Volatility and Jumps in the Athens Stock Exchange," Working Papers 00044, University of Peloponnese, Department of Economics.
- Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
- Kim Christensen & Mark Podolskij & Mathias Vetter, 2009.
"Bias-correcting the realized range-based variance in the presence of market microstructure noise,"
Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
- Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2006. "Bias-Correcting the Realized Range-Based Variance in the Presence of Market Microstructure Noise," Technical Reports 2006,52, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
- Smita Roy Trivedi, 2024. "Into the Unknown: Uncertainty, Foreboding and Financial Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 1-23, March.
- Vasyl Golosnoy & Yarema Okhrin, 2015. "Using information quality for volatility model combinations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1055-1073, June.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
- Wilson Ye Chen & Gareth W. Peters & Richard H. Gerlach & Scott A. Sisson, 2017. "Dynamic Quantile Function Models," Papers 1707.02587, arXiv.org, revised May 2021.
- Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
- Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
- Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
- Victor Bello Accioly & Beatriz Vaz de Melo Mendes, 2016. "Assessing the Impact of the Realized Range on the (E)GARCH Volatility: Evidence from Brazil," Brazilian Business Review, Fucape Business School, vol. 13(2), pages 1-26, March.
- Wu, Xinyu & Xie, Haibin & Zhang, Huanming, 2022. "Time-varying risk aversion and renminbi exchange rate volatility: Evidence from CARR-MIDAS model," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
- Tseng-Chan Tseng & Hung-Cheng Lai & Cha-Fei Lin, 2012. "The impact of overnight returns on realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 357-364, March.
- Linlan Xiao & Vigdis Boasson & Sergey Shishlenin & Victoria Makushina, 2018. "Volatility forecasting: combinations of realized volatility measures and forecasting models," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1428-1441, March.
- Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
- Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
- Richard Gerlach & Chao Wang, 2018. "Semi-parametric Dynamic Asymmetric Laplace Models for Tail Risk Forecasting, Incorporating Realized Measures," Papers 1805.08653, arXiv.org.
- Teye, Alfred Larm & Ahelegbey, Daniel Felix, 2017. "Detecting spatial and temporal house price diffusion in the Netherlands: A Bayesian network approach," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 56-64.
- Bhaumik, S. & Karanasos, M. & Kartsaklas, A., 2016. "The informative role of trading volume in an expanding spot and futures market," Journal of Multinational Financial Management, Elsevier, vol. 35(C), pages 24-40.
- Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.
- Haibin Xie & Shouyang Wang, 2018. "Timing the market: the economic value of price extremes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-24, December.
- Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
- Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
- Baltussen, Guido & Da, Zhi & Lammers, Sten & Martens, Martin, 2021. "Hedging demand and market intraday momentum," Journal of Financial Economics, Elsevier, vol. 142(1), pages 377-403.
- Chiang, Min-Hsien & Wang, Li-Min, 2011. "Volatility contagion: A range-based volatility approach," Journal of Econometrics, Elsevier, vol. 165(2), pages 175-189.
- Richard Gerlach & Chao Wang, 2016. "Forecasting risk via realized GARCH, incorporating the realized range," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 501-511, April.
- Fei, Tianlun & Liu, Xiaoquan & Wen, Conghua, 2019. "Cross-sectional return dispersion and volatility prediction," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
- Xie, Haibin & Wu, Xinyu, 2017. "A conditional autoregressive range model with gamma distribution for financial volatility modelling," Economic Modelling, Elsevier, vol. 64(C), pages 349-356.
- Cedric Okou & Eric Jacquier, 2014. "Horizon Effect in the Term Structure of Long-Run Risk-Return Trade-Offs," CIRANO Working Papers 2014s-36, CIRANO.