An empirical application of a two-factor model of stochastic volatility
Author
Abstract
Suggested Citation
DOI: 10.18267/j.pep.332
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martens, Martin & van Dijk, Dick, 2007.
"Measuring volatility with the realized range,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
- Martens, M.P.E. & van Dijk, D.J.C., 2006. "Measuring volatility with the realized range," Econometric Institute Research Papers EI 2006-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
- Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
- Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
- Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
- Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013.
"On the predictability of stock prices: A case for high and low prices,"
Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
- Massimiliano Caporin & Angelo Ranaldo & Paolo Santucci de Magistris, 2011. "On the Predictability of Stock Prices: A Case for High and Low Prices," "Marco Fanno" Working Papers 0136, Dipartimento di Scienze Economiche "Marco Fanno".
- Massimiliano Caporin & Angelo Ranaldo, 2011. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers 2011-11, Swiss National Bank.
- Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2012. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers on Finance 1213, University of St. Gallen, School of Finance.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006.
"Option valuation with conditional skewness,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
- Peter Christoffersen & Steve Heston & Kris Jacobs, 2003. "Option Valuation with Conditional Skewness," CIRANO Working Papers 2003s-50, CIRANO.
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Hidalgo, Javier & Zaffaroni, Paolo, 2007.
"A goodness-of-fit test for ARCH([infinity]) models,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 973-1013, December.
- Hidalgo, Javier & Zaffaroni, Paolo, 2007. "A goodness-of-fit test for ARCH([infinity]) models," Journal of Econometrics, Elsevier, vol. 141(2), pages 835-875, December.
- Wu, Xinyu & Zhao, An & Cheng, Tengfei, 2023. "A Real-Time GARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 56(C).
- Rombouts, Jeroen V.K. & Stentoft, Lars, 2014.
"Bayesian option pricing using mixed normal heteroskedasticity models,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
- Jeroen V.K. Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," CREATES Research Papers 2009-07, Department of Economics and Business Economics, Aarhus University.
- ROMBOUTS, Jeroen V.K. & STENTOFT, Lars, 2009. "Bayesian option pricing using mixed normal heteroskedasticity models," LIDAM Discussion Papers CORE 2009013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jeroen Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," CIRANO Working Papers 2009s-19, CIRANO.
- Jeroen V.K. Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," Cahiers de recherche 0926, CIRPEE.
- Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013.
"The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
- Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
- Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
- Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.
- Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
- Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
- Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
More about this item
Keywords
volatility; stochastic volatility models; Kalman filter;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlpep:v:2008:y:2008:i:3:id:332:p:243-253. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.