Estimation of spot volatility with superposed noisy data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.najef.2017.11.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yiqi Liu & Qiang Liu & Zhi Liu & Deng Ding, 2017. "Determining the integrated volatility via limit order books with multiple records," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1697-1714, November.
- Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
- Martens, Martin & van Dijk, Dick, 2007.
"Measuring volatility with the realized range,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
- Martens, M.P.E. & van Dijk, D.J.C., 2006. "Measuring volatility with the realized range," Econometric Institute Research Papers EI 2006-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Kim Christensen & Mark Podolskij, 2012.
"Asymptotic Theory of Range-Based Multipower Variation,"
Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 417-456, June.
- Kim Christensen & Mark Podolskij, 2011. "Asymptotic theory of range-based multipower variation," CREATES Research Papers 2011-47, Department of Economics and Business Economics, Aarhus University.
- Jing, Bing-Yi & Liu, Zhi & Kong, Xin-Bing, 2017. "Estimating Volatility Functionals With Multiple Transactions," Econometric Theory, Cambridge University Press, vol. 33(2), pages 331-365, April.
- Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
- Kanaya, Shin & Kristensen, Dennis, 2016.
"Estimation Of Stochastic Volatility Models By Nonparametric Filtering,"
Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
- Shin Kanaya & Dennis Kristensen, 2010. "Estimation of Stochastic Volatility Models by Nonparametric Filtering," CREATES Research Papers 2010-67, Department of Economics and Business Economics, Aarhus University.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers 09/15, Institute for Fiscal Studies.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers CWP09/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yacine Ait-Sahalia & Jialin Yu, 2008.
"High Frequency Market Microstructure Noise Estimates and Liquidity Measures,"
NBER Working Papers
13825, National Bureau of Economic Research, Inc.
- Yacine Ait-Sahalia & Jialin Yu, 2009. "High frequency market microstructure noise estimates and liquidity measures," Papers 0906.1444, arXiv.org.
- Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015.
"Spot volatility estimation using delta sequences,"
Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
- Cecilia Mancini & Vanessa Mattiussi & Roberto Reno', 2012. "Spot Volatility Estimation Using Delta Sequences," Working Papers - Mathematical Economics 2012-10, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
- Kim Christensen & Mark Podolskij & Mathias Vetter, 2009.
"Bias-correcting the realized range-based variance in the presence of market microstructure noise,"
Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
- Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2006. "Bias-Correcting the Realized Range-Based Variance in the Presence of Market Microstructure Noise," Technical Reports 2006,52, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Foster, Dean P & Nelson, Daniel B, 1996.
"Continuous Record Asymptotics for Rolling Sample Variance Estimators,"
Econometrica, Econometric Society, vol. 64(1), pages 139-174, January.
- Dean P. Foster & Daniel B. Nelson, 1994. "Continuous Record Asymptotics for Rolling Sample Variance Estimators," NBER Technical Working Papers 0163, National Bureau of Economic Research, Inc.
- Veraart, Almut E.D., 2010.
"Inference For The Jump Part Of Quadratic Variation Of Itô Semimartingales,"
Econometric Theory, Cambridge University Press, vol. 26(2), pages 331-368, April.
- Almut Veraart, 2008. "Inference for the jump part of quadratic variation of Itô semimartingales," CREATES Research Papers 2008-17, Department of Economics and Business Economics, Aarhus University.
- Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
- Bannouh, Karim & Martens, Martin & van Dijk, Dick, 2013.
"Forecasting volatility with the realized range in the presence of noise and non-trading,"
The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 535-551.
- Bannouh, K. & Martens, M.P.E. & van Dijk, D.J.C., 2012. "Forecasting Volatility with the Realized Range in the Presence of Noise and Non-Trading," ERIM Report Series Research in Management ERS-2012-018-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
- Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Shigeyoshi Ogawa & Simona Sanfelici, 2011. "An Improved Two‐step Regularization Scheme for Spot Volatility Estimation," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 40(3), pages 105-132, November.
- Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
- Kristensen, Dennis, 2010.
"Nonparametric Filtering Of The Realized Spot Volatility: A Kernel-Based Approach,"
Econometric Theory, Cambridge University Press, vol. 26(1), pages 60-93, February.
- Dennis Kristensen, 2007. "Nonparametric Filtering of the Realised Spot Volatility: A Kernel-based Approach," CREATES Research Papers 2007-02, Department of Economics and Business Economics, Aarhus University.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
- Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015.
"Spot volatility estimation using delta sequences,"
Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
- Cecilia Mancini & Vanessa Mattiussi & Roberto Reno', 2012. "Spot Volatility Estimation Using Delta Sequences," Working Papers - Mathematical Economics 2012-10, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
- Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
- Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
- Zhang, Congshan & Li, Jia & Bollerslev, Tim, 2022. "Occupation density estimation for noisy high-frequency data," Journal of Econometrics, Elsevier, vol. 227(1), pages 189-211.
- Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "Liquidity and realized range-based volatility forecasting: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1102-1113.
- Bannouh, Karim & Martens, Martin & van Dijk, Dick, 2013.
"Forecasting volatility with the realized range in the presence of noise and non-trading,"
The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 535-551.
- Bannouh, K. & Martens, M.P.E. & van Dijk, D.J.C., 2012. "Forecasting Volatility with the Realized Range in the Presence of Noise and Non-Trading," ERIM Report Series Research in Management ERS-2012-018-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Kanaya, Shin & Kristensen, Dennis, 2016.
"Estimation Of Stochastic Volatility Models By Nonparametric Filtering,"
Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
- Shin Kanaya & Dennis Kristensen, 2010. "Estimation of Stochastic Volatility Models by Nonparametric Filtering," CREATES Research Papers 2010-67, Department of Economics and Business Economics, Aarhus University.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers 09/15, Institute for Fiscal Studies.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers CWP09/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Markus Bibinger & Nikolaus Hautsch & Peter Malec & Markus Reiss, 2019.
"Estimating the Spot Covariation of Asset Prices—Statistical Theory and Empirical Evidence,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 419-435, July.
- Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2014. "Estimating the spot covariation of asset prices: Statistical theory and empirical evidence," CFS Working Paper Series 477, Center for Financial Studies (CFS).
- Markus Bibinger & Nikolaus Hautsch & Peter Malec & Markus Reiss, 2014. "Estimating the Spot Covariation of Asset Prices – Statistical Theory and Empirical Evidence," Cambridge Working Papers in Economics 1464, Faculty of Economics, University of Cambridge.
- Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2014. "Estimating the spot covariation of asset prices: Statistical theory and empirical evidence," SFB 649 Discussion Papers 2014-055, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Maria Elvira Mancino & Maria Cristina Recchioni, 2015. "Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-33, September.
- Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
- Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
- Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
- Mustafayeva, Konul & Wang, Weining, 2020. "Non-Parametric Estimation of Spot Covariance Matrix with High-Frequency Data," IRTG 1792 Discussion Papers 2020-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- repec:hum:wpaper:sfb649dp2014-055 is not listed on IDEAS
- Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
- Liu, Qiang & Liu, Yiqi & Liu, Zhi, 2018. "Estimating spot volatility in the presence of infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1958-1987.
- Ang, Andrew & Kristensen, Dennis, 2012.
"Testing conditional factor models,"
Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
- Dennis Kristensen & Andrew Ang, 2009. "Testing Conditional Factor Models," CREATES Research Papers 2009-09, Department of Economics and Business Economics, Aarhus University.
- Andrew Ang & Dennis Kristensen, 2011. "Testing Conditional Factor Models," NBER Working Papers 17561, National Bureau of Economic Research, Inc.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- He, Lidan & Liu, Qiang & Liu, Zhi, 2020. "Edgeworth corrections for spot volatility estimator," Statistics & Probability Letters, Elsevier, vol. 164(C).
- Kim Christensen & Mark Podolskij & Mathias Vetter, 2009.
"Bias-correcting the realized range-based variance in the presence of market microstructure noise,"
Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
- Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2006. "Bias-Correcting the Realized Range-Based Variance in the Presence of Market Microstructure Noise," Technical Reports 2006,52, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
More about this item
Keywords
High frequency financial data; Spot volatility; Range-based estimation; Kernel estimate; Multiple records; Microstructure noise; Central limit theorem;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:44:y:2018:i:c:p:62-79. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.