My bibliography
Save this item
Quasi-maximum likelihood estimation for conditional quantiles
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lee, Tae-Hwy & Yang, Weiping, 2014.
"Granger-causality in quantiles between financial markets: Using copula approach,"
International Review of Financial Analysis, Elsevier, vol. 33(C), pages 70-78.
- Tae-Hwy Lee & Weiping Yang, 2014. "Granger-Causality in Quantiles between Financial Markets: Using Copula Approach," Working Papers 201406, University of California at Riverside, Department of Economics.
- Lee, Tae-Hwy & Ullah, Aman & Wang, He, 2018. "The second-order bias of quantile estimators," Economics Letters, Elsevier, vol. 173(C), pages 143-147.
- Tae-Hwy Lee & Weiping Yang, 2012.
"Money–Income Granger-Causality in Quantiles,"
Advances in Econometrics, in: 30th Anniversary Edition, pages 385-409,
Emerald Group Publishing Limited.
- Tae-Hwy Lee & Weiping Yang, 2014. "Money-Income Granger-Causality in Quantiles," Working Papers 201423, University of California at Riverside, Department of Economics, revised Sep 2012.
- Großmaß Lidan, 2014. "Liquidity and the Value at Risk," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(5), pages 572-602, October.
- Bernstein, David H. & Parmeter, Christopher F. & Tsionas, Mike G., 2023. "On the performance of the United States nuclear power sector: A Bayesian approach," Energy Economics, Elsevier, vol. 125(C).
- Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
- Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
- White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015.
"VAR for VaR: Measuring tail dependence using multivariate regression quantiles,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
- Habert white & Tae-Hwan Kim & Simone Manganelli, 2012. "VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles," Working papers 2012rwp-45, Yonsei University, Yonsei Economics Research Institute.
- Manganelli, Simone & White, Halbert & Kim, Tae-Hwan, 2015. "VAR for VaR: measuring tail dependence using multivariate regression quantiles," Working Paper Series 1814, European Central Bank.
- Oliver Linton & Dajing Shang & Yang Yan, 2012.
"Efficient estimation of conditional risk measures in a semiparametric GARCH model,"
CeMMAP working papers
25/12, Institute for Fiscal Studies.
- Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers CWP25/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Gabriel Montes-Rojas & Zacharias Psaradakis & Martín Sola, 2024. "On Regime Separation in Markov-Switching Quantile Regressions," Department of Economics Working Papers 2024_05, Universidad Torcuato Di Tella.
- Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
- DeRossi, G. & Harvey, A., 2006. "Time-Varying Quantiles," Cambridge Working Papers in Economics 0649, Faculty of Economics, University of Cambridge.
- Dong Jin Lee, 2009. "Testing Parameter Stability in Quantile Models: An Application to the U.S. Inflation Process," Working papers 2009-26, University of Connecticut, Department of Economics.
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Marc Hallin & Catherine Vermandele & Bas J. M. Werker, 2008.
"Semiparametrically efficient inference based on signs and ranks for median‐restricted models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 389-412, April.
- Hallin, M. & Vermandele, C. & Werker, B.J.M., 2004. "Semiparametrically Efficient Inference Based on Signs and Ranks for Median Restricted Models," Other publications TiSEM 05757b2b-ad74-4583-b012-b, Tilburg University, School of Economics and Management.
- Hallin, M. & Vermandele, C. & Werker, B.J.M., 2004. "Semiparametrically Efficient Inference Based on Signs and Ranks for Median Restricted Models," Discussion Paper 2004-11, Tilburg University, Center for Economic Research.
- Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
- Akanksha Negi, 2020. "Doubly weighted M-estimation for nonrandom assignment and missing outcomes," Papers 2011.11485, arXiv.org.
- Tae-Hwy Lee & Aman Ullah & He Wang, 2024. "The second-order bias and mean squared error of quantile regression estimators," Indian Economic Review, Springer, vol. 59(1), pages 11-68, October.
- Anil K. Bera & Antonio F. Galvao Jr. & Gabriel V. Montes-Rojas & Sung Y. Park, 2014.
"Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression,"
World Scientific Book Chapters, in: Kaddour Hadri & William Mikhail (ed.), Econometric Methods and Their Applications in Finance, Macro and Related Fields, chapter 7, pages 167-199,
World Scientific Publishing Co. Pte. Ltd..
- Bera, A. K. & Galvao Jr, A. F. & Montes-Rojas, G. & Park, S. Y., 2010. "Which quantile is the most informative? Maximum likelihood, maximum entropy and quantile regression," Working Papers 10/08, Department of Economics, City University London.
- Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021.
"Identifying indicators of systemic risk,"
Journal of International Economics, Elsevier, vol. 132(C).
- Hartwig, Benny & Meinerding, Christoph & Schüler, Yves, 2020. "Identifying indicators of systemic risk," Discussion Papers 33/2020, Deutsche Bundesbank.
- Tianshun Yan & Yanyong Zhao & Wentao Wang, 2020. "Likelihood-based estimation of a semiparametric time-dependent jump diffusion model of the short-term interest rate," Computational Statistics, Springer, vol. 35(2), pages 539-557, June.
- Christophe Boucher & Sessi Tokpavi, 2019. "Stocks and Bonds: Flight-to-Safety for Ever?," Post-Print hal-02067096, HAL.
- Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
- Escanciano, Juan Carlos & Velasco, Carlos, 2010.
"Specification tests of parametric dynamic conditional quantiles,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
- Juan Carlos Escanciano & Carlos Velasco, 2008. "Specification Tests of Parametric Dynamic Conditional Quantiles," CAEPR Working Papers 2008-021, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- J. Carlos Escanciano & Carlos Velasco, 2010. "Specification tests of parametric dynamic conditional quantiles," Post-Print hal-00732534, HAL.
- Christophe Boucher & Sessi Tokpavi, 2018. "Stocks and Bonds: Flight-to-Safety for Ever?," Working Papers hal-04141705, HAL.
- Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
- Susana Faria & Maria Conceição Portela, 2016. "Student Performance in Mathematics using PISA-2009 data for Portugal," Working Papers de Gestão (Management Working Papers) 01, Católica Porto Business School, Universidade Católica Portuguesa.
- Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
- Lieli, Robert P. & Stinchcombe, Maxwell B. & Grolmusz, Viola M., 2019. "Unrestricted and controlled identification of loss functions: Possibility and impossibility results," International Journal of Forecasting, Elsevier, vol. 35(3), pages 878-890.
- Ivana Komunjer, 2007.
"Asymmetric power distribution: Theory and applications to risk measurement,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
- Ivana Komunjer, 2004. "Asymmetric Power Distribution: Theory and Applications to Risk Measurement," Econometric Society 2004 Latin American Meetings 44, Econometric Society.
- Zongwu Cai & Meng Shi & Yue Zhao & Wuqing Wu, 2020. "Testing Financial Hierarchy Based on A PDQ-CRE Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202011, University of Kansas, Department of Economics, revised Jul 2020.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
- repec:hal:journl:peer-00732534 is not listed on IDEAS
- Timo Dimitriadis & Julie Schnaitmann, 2019. "Forecast Encompassing Tests for the Expected Shortfall," Papers 1908.04569, arXiv.org, revised Aug 2020.
- Dong Jin Lee, 2020. "Optimal tests for parameter breaking process in conditional quantile models," The Japanese Economic Review, Springer, vol. 71(3), pages 479-510, July.
- Lijuan Huo & Tae-Hwan Kim & Yunmi Kim, 2013.
"Testing for Autocorrelation in Quantile Regression Models,"
Working papers
2013rwp-54, Yonsei University, Yonsei Economics Research Institute.
- Lijuan Huo & Tae-Hwan Kim & Yunmi Kim & Dong Jin Lee, 2014. "Testing for Autocorrelation in Quantile Regression Models," Working papers 2014rwp-76, Yonsei University, Yonsei Economics Research Institute.
- Yang Yang & Tae-Hwy Lee, 2004. "Bagging Binary Predictors for Time Series," Econometric Society 2004 Far Eastern Meetings 512, Econometric Society.
- Gourieroux, C. & Jasiak, J., 2008.
"Dynamic quantile models,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
- Joan Jasiak & C. Gourieroux, 2006. "Dynamic Quantile Models," Working Papers 2006_4, York University, Department of Economics.
- Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019.
"Dynamic semiparametric models for expected shortfall (and Value-at-Risk),"
Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
- Andrew J. Patton & Johanna F. Ziegel & Rui Chen, 2017. "Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)," Papers 1707.05108, arXiv.org.
- Sebastian Bayer & Timo Dimitriadis, 2022. "Regression-Based Expected Shortfall Backtesting [Backtesting Expected Shortfall]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 437-471.
- Jungsik Noh & Sangyeol Lee, 2016. "Quantile Regression for Location-Scale Time Series Models with Conditional Heteroscedasticity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 700-720, September.
- Yunmi Kim & Lijuan Huo & Tae-Hwan Kim, 2020. "Dealing with Markov-Switching Parameters in Quantile Regression Models," Working papers 2020rwp-166, Yonsei University, Yonsei Economics Research Institute.
- De Rezende, Rafael B., 2015. "Risks in macroeconomic fundamentals and excess bond returns predictability," Working Paper Series 295, Sveriges Riksbank (Central Bank of Sweden).
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Huang, Dashan & Yu, Baimin & Fabozzi, Frank J. & Fukushima, Masao, 2009. "CAViaR-based forecast for oil price risk," Energy Economics, Elsevier, vol. 31(4), pages 511-518, July.
- Fabian Krüger & Ingmar Nolte, 2011. "Disagreement, Uncertainty and the True Predictive Density," Working Paper Series of the Department of Economics, University of Konstanz 2011-43, Department of Economics, University of Konstanz.
- Escanciano, Juan Carlos & Velasco, Carlos, 2010.
"Specification tests of parametric dynamic conditional quantiles,"
Journal of Econometrics,
Elsevier, vol. 159(1), pages 209-221, November.
- Juan Carlos Escanciano & Carlos Velasco, 2008. "Specification Tests of Parametric Dynamic Conditional Quantiles," Caepr Working Papers 2008-021, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
- J. Carlos Escanciano & Carlos Velasco, 2010. "Specification tests of parametric dynamic conditional quantiles," Post-Print hal-00732534, HAL.
- Sessi Tokpavi & Christophe Boucher, 2018. "Stocks and Bonds: Flight-to-Safety for Ever?," EconomiX Working Papers 2018-39, University of Paris Nanterre, EconomiX.
- Ying-Ying Lee, 2015. "Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification," Econometrics, MDPI, vol. 4(1), pages 1-14, December.
- White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2010. "VAR for VaR: measuring systemic risk using multivariate regression quantiles," MPRA Paper 35372, University Library of Munich, Germany.
- Reiss Philip T. & Huang Lei, 2012. "Smoothness Selection for Penalized Quantile Regression Splines," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-27, May.
- Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
- Christian Brownlees & Giuseppe Cavaliere & Alice Monti, 2018. "Evaluating The Accuracy Of Tail Risk Forecasts For Systemic Risk Measurement," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-25, June.
- Bera Anil K. & Galvao Antonio F. & Montes-Rojas Gabriel V. & Park Sung Y., 2016. "Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 79-101, January.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
- Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
- Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
- El Ghouch, Anouar & Genton, Marc G., 2009. "Local Polynomial Quantile Regression With Parametric Features," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1416-1429.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- de Castro, Luciano & Galvao, Antonio F. & Montes-Rojas, Gabriel, 2020. "Quantile selection in non-linear GMM quantile models," Economics Letters, Elsevier, vol. 195(C).
- Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
- Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2022. "Characterizing M-estimators," Papers 2208.08108, arXiv.org.
- Cai, Zongwu & Chen, Linna & Fang, Ying, 2018. "A semiparametric quantile panel data model with an application to estimating the growth effect of FDI," Journal of Econometrics, Elsevier, vol. 206(2), pages 531-553.
- Zongwu Cai & Ying Fang & Dingshi Tian, 2024. "CAViaR Model Selection Via Adaptive Lasso," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202403, University of Kansas, Department of Economics, revised Jan 2024.
- Xiaochun Meng & James W. Taylor & Souhaib Ben Taieb & Siran Li, 2020. "Scores for Multivariate Distributions and Level Sets," Papers 2002.09578, arXiv.org, revised Jun 2023.
- Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
- Manganelli, Simone & White, Halbert & Kim, Tae-Hwan, 2008. "Modeling autoregressive conditional skewness and kurtosis with multi-quantile CAViaR," Working Paper Series 957, European Central Bank.
- Rahim Alhamzawi, 2016. "Bayesian Analysis of Composite Quantile Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 358-373, October.
- Dong Jin Lee & Jai Hyung Yoon, 2012. "The New Keynesian Phillips Curves in Multiple Quantiles and the Asymmetry of Monetary Policy," Working papers 2012-03, University of Connecticut, Department of Economics.
- Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Yoldas, Emre, 2007. "Optimality of the RiskMetrics VaR model," Finance Research Letters, Elsevier, vol. 4(3), pages 137-145, September.
- Alecos Papadopoulos, 2024. "Some notes on the asymmetry of the regression error," Journal of Productivity Analysis, Springer, vol. 61(1), pages 37-42, February.
- Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
- Marco Bee & Luca Trapin, 2018. "Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review," Risks, MDPI, vol. 6(2), pages 1-16, April.