IDEAS home Printed from https://ideas.repec.org/a/wsi/afexxx/v13y2018i02ns2010495218500094.html
   My bibliography  Save this article

Evaluating The Accuracy Of Tail Risk Forecasts For Systemic Risk Measurement

Author

Listed:
  • CHRISTIAN BROWNLEES

    (Pompeu Fabra University, Department of Economics and Business, Ramon Trias Fargas, 25-27, Barcelona, Spain)

  • GIUSEPPE CAVALIERE

    (#x2020;University of Bologna, Department of Economics, Piazza Scaravilli, 2, Bologna, Italy)

  • ALICE MONTI

    (#x2020;University of Bologna, Department of Economics, Piazza Scaravilli, 2, Bologna, Italy)

Abstract

In this paper, we address how to evaluate tail risk forecasts for systemic risk (SRISK) measurement. We propose two loss functions, the Tail Tick Loss and the Tail Mean Square Error, to evaluate, respectively, Conditional Value-at-Risk (CoVaR) and MES forecasts. We then analyse CoVaR and MES forecasts for a panel of top US financial institutions between 2000 and 2012 constructed using a set of bivariate DCC-GARCH-type models. The empirical results highlight the importance of using an appropriate loss function for the evaluation of such forecasts. Among other findings, the analysis confirms that the DCC-GJR specification provides accurate predictions for both CoVaR and MES, in particular for the riskiest group of institutions in the panel (Broker-Dealers).

Suggested Citation

  • Christian Brownlees & Giuseppe Cavaliere & Alice Monti, 2018. "Evaluating The Accuracy Of Tail Risk Forecasts For Systemic Risk Measurement," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-25, June.
  • Handle: RePEc:wsi:afexxx:v:13:y:2018:i:02:n:s2010495218500094
    DOI: 10.1142/S2010495218500094
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010495218500094
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010495218500094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    2. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    3. Popescu, Alexandra & Turcu, Camelia, 2017. "Sovereign debt and systemic risk in the eurozone," Economic Modelling, Elsevier, vol. 67(C), pages 275-284.
    4. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    5. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    6. Sylvain Benoît & Gilbert Colletaz & Christophe Hurlin & Christophe Pérignon, 2013. "A Theoretical and Empirical Comparison of Systemic Risk Measures," Working Papers halshs-00746272, HAL.
    7. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    9. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    10. Huang, Xin & Zhou, Hao & Zhu, Haibin, 2009. "A framework for assessing the systemic risk of major financial institutions," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2036-2049, November.
    11. Robert Engle & Eric Jondeau & Michael Rockinger, 2015. "Systemic Risk in Europe," Review of Finance, European Finance Association, vol. 19(1), pages 145-190.
    12. Wilmar Cabrera & Jorge Hurtado & Miguel Morales & Juan Sebastián Rojas, 2014. "A Composite Indicator of Systemic Stress (CISS) for Colombia," Temas de Estabilidad Financiera 80, Banco de la Republica de Colombia.
    13. Mr. Marcus Pramor & Ms. Natalia T. Tamirisa, 2006. "Common Volatility Trends in the Central and Eastern European Currencies and the Euro," IMF Working Papers 2006/206, International Monetary Fund.
    14. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    15. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    16. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    17. Yun, Jaeho & Moon, Hyejung, 2014. "Measuring systemic risk in the Korean banking sector via dynamic conditional correlation models," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 94-114.
    18. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
    19. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    20. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    21. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    22. Christian T. Brownlees & Giampiero M. Gallo, 2008. "On Variable Selection for Volatility Forecasting: The Role of Focused Selection Criteria," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 513-539, Fall.
    23. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    24. Christian Brownlees & Robert F. Engle, 2017. "SRISK: A Conditional Capital Shortfall Measure of Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 48-79.
    25. Guo, Hui & Neely, Christopher J., 2008. "Investigating the intertemporal risk-return relation in international stock markets with the component GARCH model," Economics Letters, Elsevier, vol. 99(2), pages 371-374, May.
    26. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    27. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    28. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    29. Li, Dandan & Ghoshray, Atanu & Morley, Bruce, 2012. "Measuring the risk premium in uncovered interest parity using the component GARCH-M model," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 167-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra-Maria Chiper, 2023. "Financial Risk Optimisation Methods: A Survey," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 31, pages 155-168, June.
    2. Stolbov, Mikhail & Shchepeleva, Maria, 2020. "Systemic risk, economic policy uncertainty and firm bankruptcies: Evidence from multivariate causal inference," Research in International Business and Finance, Elsevier, vol. 52(C).
    3. Maarten R.C. Van Oordt, 2023. "Calibrating the Magnitude of the Countercyclical Capital Buffer Using Market‐Based Stress Tests," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(2-3), pages 465-501, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    6. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    8. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    9. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    11. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    12. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    13. Pham, Thach N. & Powell, Robert & Bannigidadmath, Deepa, 2021. "Systemically important banks in Asian emerging markets: Evidence from four systemic risk measures," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    14. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.
    15. Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
    16. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    17. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    18. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    19. Trino-Manuel Ñíguez & Javier Perote, 2012. "Forecasting Heavy-Tailed Densities with Positive Edgeworth and Gram-Charlier Expansions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 600-627, August.
    20. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:afexxx:v:13:y:2018:i:02:n:s2010495218500094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/afe/afe.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.