My bibliography
Save this item
Shape restricted nonparametric regression with Bernstein polynomials
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.
- Fourrier-Nicolaï Edwin & Lubrano Michel, 2024.
"Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 319-336, April.
- Edwin Fourrier-Nicolaï & Michel Lubrano, 2023. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Post-Print hal-04356211, HAL.
- Edwin Fourrier-Nicolaï & Michel Lubrano, 2023. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Post-Print hal-04185645, HAL.
- Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
- Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
- Taeryon Choi & Hea-Jung Kim & Seongil Jo, 2016. "Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2751-2771, November.
- Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
- Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023.
"Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
- Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Identification of Time-Varying Transformation Models with Fixed Effects, with an Application to Unobserved Heterogeneity in Resource Shares," Papers 2008.05507, arXiv.org, revised Apr 2021.
- Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Hu, Qinqin & Zeng, Peng & Lin, Lu, 2015. "The dual and degrees of freedom of linearly constrained generalized lasso," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 13-26.
- Xiaohong Chen & Yin Jia Jeff Qiu, 2016.
"Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide,"
Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
- Xiaohong Chen & Yin Jia Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: a Gentle Guide," Cowles Foundation Discussion Papers 2032, Cowles Foundation for Research in Economics, Yale University.
- Bertrand, Aurelie & Van Keilegom, Ingrid & Legrand, Catherine, 2017. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," LIDAM Discussion Papers ISBA 2017025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Georg Ch. Pflug & Roger J.-B. Wets, 2013. "Shape-restricted nonparametric regression with overall noisy measurements," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 323-338, June.
- Yongxin Liu & Peng Zeng & Lu Lin, 2021. "Degrees of freedom for regularized regression with Huber loss and linear constraints," Statistical Papers, Springer, vol. 62(5), pages 2383-2405, October.
- Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
- Gao, Zhikun & Tang, Yanlin & Wang, Huixia Judy & Wu, Guangying K. & Lin, Jeff, 2020. "Automatic identification of curve shapes with applications to ultrasonic vocalization," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
- Bo Han & Ingrid Van Keilegom & Xiaoguang Wang, 2022. "Semiparametric estimation of the nonmixture cure model with auxiliary survival information," Biometrics, The International Biometric Society, vol. 78(2), pages 448-459, June.
- Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
- Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2024. "A Semi-Closed Form Approximation of Arbitrage-Free Call Option Price Surface," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1431-1457, April.
- Peng Zeng & Qinqin Hu & Xiaoyu Li, 2017. "Geometry and Degrees of Freedom of Linearly Constrained Generalized Lasso," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 989-1008, December.
- Ghosal, Rahul & Ghosh, Sujit K., 2022. "Bayesian inference for generalized linear model with linear inequality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
- Claudia Köllmann & Björn Bornkamp & Katja Ickstadt, 2014. "Unimodal regression using Bernstein–Schoenberg splines and penalties," Biometrics, The International Biometric Society, vol. 70(4), pages 783-793, December.
- Irene Botosaru & Chris Muris & Krishna Pendakur, 2020.
"Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares,"
CeMMAP working papers
CWP26/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
- Ghosal, Rahul & Ghosh, Sujit & Urbanek, Jacek & Schrack, Jennifer A. & Zipunnikov, Vadim, 2023. "Shape-constrained estimation in functional regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Edwin Fourrier-Nicolai & Michel Lubrano, 2022. "Bayesian inference for non-anonymous Growth Incidence Curves using Bernstein polynomials: an application to academic wage dynamics," Working Papers hal-03880243, HAL.
- Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).