IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i1p297-307.html
   My bibliography  Save this article

Flexible parametric approach to classical measurement error variance estimation without auxiliary data

Author

Listed:
  • Aurélie Bertrand
  • Ingrid Van Keilegom
  • Catherine Legrand

Abstract

Measurement error in the continuous covariates of a model generally yields bias in the estimators. It is a frequent problem in practice, and many correction procedures have been developed for different classes of models. However, in most cases, some information about the measurement error distribution is required. When neither validation nor auxiliary data (e.g., replicated measurements) are available, this specification turns out to be tricky. In this article, we develop a flexible likelihood‐based procedure to estimate the variance of classical additive error of Gaussian distribution, without additional information, when the covariate has compact support. The performance of this estimator is investigated both in an asymptotic way and through finite sample simulations. The usefulness of the obtained estimator when using the simulation extrapolation (SIMEX) algorithm, a widely used correction method, is then analyzed in the Cox proportional hazards model through other simulations. Finally, the whole procedure is illustrated on real data.

Suggested Citation

  • Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:297-307
    DOI: 10.1111/biom.12960
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12960
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schwarz, M. & Van Bellegem, S., 2010. "Consistent density deconvolution under partially known error distribution," LIDAM Reprints ISBA 2010013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Bertrand, Aurelie & Legrand, Catherine & Leonard, Daniel & Van Keilegom, Ingrid, 2017. "Robustness of estimation methods in a survival cure model with mismeasured covariates," LIDAM Reprints ISBA 2017021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    2. Jeong Min Jeon & Ingrid Van Keilegom, 2024. "Density estimation and regression analysis on hyperspheres in the presence of measurement error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 513-556, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertrand, Aurelie & Van Keilegom, Ingrid & Legrand, Catherine, 2017. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," LIDAM Discussion Papers ISBA 2017025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    3. Li, Mengyan & Ma, Yanyuan & Li, Runze, 2019. "Semiparametric regression for measurement error model with heteroscedastic error," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 320-338.
    4. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    5. Jochmans, Koen & Henry, Marc & Salanié, Bernard, 2017. "Inference On Two-Component Mixtures Under Tail Restrictions," Econometric Theory, Cambridge University Press, vol. 33(3), pages 610-635, June.
    6. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    7. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Nonparametric Frontier Estimation from Noisy Data," IDEI Working Papers 625, Institut d'Économie Industrielle (IDEI), Toulouse.
    9. Zhuan Pei & Yi Shen, 2017. "The Devil is in the Tails: Regression Discontinuity Design with Measurement Error in the Assignment Variable," Advances in Econometrics, in: Regression Discontinuity Designs, volume 38, pages 455-502, Emerald Group Publishing Limited.
    10. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    11. D’Haultfœuille, Xavier & Février, Philippe, 2015. "Identification of mixture models using support variations," Journal of Econometrics, Elsevier, vol. 189(1), pages 70-82.
    12. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2024. "Penalized sieve estimation of zero‐inefficiency stochastic frontiers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 41-65, January.
    13. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    14. Thomas Aronsson & Katharina Jenderny & Gauthier Lanot, 2024. "A maximum likelihood bunching estimator of the elasticity of taxable income," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 200-216, January.
    15. Martin Kroll, 2019. "Nonparametric intensity estimation from noisy observations of a Poisson process under unknown error distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 961-990, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:297-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.