IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v25y2013i2p323-338.html
   My bibliography  Save this article

Shape-restricted nonparametric regression with overall noisy measurements

Author

Listed:
  • Georg Ch. Pflug
  • Roger J.-B. Wets

Abstract

For a nonparametric regression problem with errors in variables, we consider a shape-restricted regression function estimate, which does not require the choice of bandwidth parameters. We demonstrate that this estimate is consistent for classes of regression function candidates, which are closed under the graph topology.

Suggested Citation

  • Georg Ch. Pflug & Roger J.-B. Wets, 2013. "Shape-restricted nonparametric regression with overall noisy measurements," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 323-338, June.
  • Handle: RePEc:taf:gnstxx:v:25:y:2013:i:2:p:323-338
    DOI: 10.1080/10485252.2012.754890
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.754890
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.754890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beresteanu, Arie, 2004. "Nonparametric Estimation of Regression Functions under Restrictions on Partieal Derivatives," Working Papers 04-06, Duke University, Department of Economics.
    2. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    3. Engel, J & Kneip, A, 1995. "Model Estimation in Nonlinear Regression," Papers 9510, Catholique de Louvain - Institut de statistique.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
    2. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    3. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2024. "A Semi-Closed Form Approximation of Arbitrage-Free Call Option Price Surface," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1431-1457, April.
    4. Fourrier-Nicolaï Edwin & Lubrano Michel, 2024. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 319-336, April.
    5. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Daniel J. Henderson & Christopher F. Parmeter, 2009. "Imposing economic constraints in nonparametric regression: survey, implementation, and extension," Advances in Econometrics, in: Nonparametric Econometric Methods, pages 433-469, Emerald Group Publishing Limited.
    7. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    8. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    9. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
    10. Henderson, Daniel J. & List, John A. & Millimet, Daniel L. & Parmeter, Christopher F. & Price, Michael K., 2012. "Empirical implementation of nonparametric first-price auction models," Journal of Econometrics, Elsevier, vol. 168(1), pages 17-28.
    11. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    12. Natalia Lazzati & John K.-H. Quah & Koji Shirai, 2018. "Nonparametric analysis of monotone choice," Discussion Paper Series 184, School of Economics, Kwansei Gakuin University.
    13. Taeryon Choi & Hea-Jung Kim & Seongil Jo, 2016. "Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2751-2771, November.
    14. Cody Carroll & Hans‐Georg Müller & Alois Kneip, 2021. "Cross‐component registration for multivariate functional data, with application to growth curves," Biometrics, The International Biometric Society, vol. 77(3), pages 839-851, September.
    15. Yongxin Liu & Peng Zeng & Lu Lin, 2021. "Degrees of freedom for regularized regression with Huber loss and linear constraints," Statistical Papers, Springer, vol. 62(5), pages 2383-2405, October.
    16. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    17. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    18. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    19. Bo Han & Ingrid Van Keilegom & Xiaoguang Wang, 2022. "Semiparametric estimation of the nonmixture cure model with auxiliary survival information," Biometrics, The International Biometric Society, vol. 78(2), pages 448-459, June.
    20. Schick, Anton, 1999. "Efficient estimation of a shift in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 287-301, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:25:y:2013:i:2:p:323-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.