IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v178y2023ics0167947322001943.html
   My bibliography  Save this article

Shape-constrained estimation in functional regression with Bernstein polynomials

Author

Listed:
  • Ghosal, Rahul
  • Ghosh, Sujit
  • Urbanek, Jacek
  • Schrack, Jennifer A.
  • Zipunnikov, Vadim

Abstract

Shape restrictions on functional regression coefficients such as non-negativity, monotonicity, convexity or concavity are often available in the form of a prior knowledge or required to maintain a structural consistency in functional regression models. A new estimation method is developed in shape-constrained functional regression models using Bernstein polynomials. Specifically, estimation approaches from nonparametric regression are extended to functional data, properly accounting for shape-constraints in a large class of functional regression models such as scalar-on-function regression (SOFR), function-on-scalar regression (FOSR), and function-on-function regression (FOFR). Theoretical results establish the asymptotic consistency of the constrained estimators under standard regularity conditions. A projection based approach provides point-wise asymptotic confidence intervals for the constrained estimators. A bootstrap test is developed facilitating testing of the shape constraints. Numerical analysis using simulations illustrates improvement in efficiency of the estimators from the use of the proposed method under shape constraints. Two applications include i) modeling a drug effect in a mental health study via shape-restricted FOSR and ii) modeling subject-specific quantile functions of accelerometry-estimated physical activity in the Baltimore Longitudinal Study of Aging (BLSA) as outcomes via shape-restricted quantile-function on scalar regression (QFOSR). R software implementation and illustration of the proposed estimation method and the test is provided.

Suggested Citation

  • Ghosal, Rahul & Ghosh, Sujit & Urbanek, Jacek & Schrack, Jennifer A. & Zipunnikov, Vadim, 2023. "Shape-constrained estimation in functional regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001943
    DOI: 10.1016/j.csda.2022.107614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322001943
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    2. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    3. I. Gijbels & M. A. Ibrahim & A. Verhasselt, 2017. "Shape testing in quantile varying coefficient models with heteroscedastic error," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 391-406, April.
    4. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    5. S. McKay Curtis & Sujit K. Ghosh, 2011. "A variable selection approach to monotonic regression with Bernstein polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 961-976, February.
    6. Eunji Lim & Peter W. Glynn, 2012. "Consistency of Multidimensional Convex Regression," Operations Research, INFORMS, vol. 60(1), pages 196-208, February.
    7. I‐Shou Chang & Chao A. Hsiung & Yuh‐Jenn Wu & Che‐Chi Yang, 2005. "Bayesian Survival Analysis Using Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 447-466, September.
    8. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    9. Hojin Yang & Veerabhadran Baladandayuthapani & Arvind U.K. Rao & Jeffrey S. Morris, 2020. "Quantile Function on Scalar Regression Analysis for Distributional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 90-106, January.
    10. Fan, Zhaohu & Reimherr, Matthew, 2017. "High-dimensional adaptive function-on-scalar regression," Econometrics and Statistics, Elsevier, vol. 1(C), pages 167-183.
    11. Gareth M. James & Courtney Paulson & Paat Rusmevichientong, 2020. "Penalized and Constrained Optimization: An Application to High-Dimensional Website Advertising," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 107-122, January.
    12. Daisuke Yagi & Yining Chen & Andrew L. Johnson & Timo Kuosmanen, 2020. "Shape-Constrained Kernel-Weighted Least Squares: Estimating Production Functions for Chilean Manufacturing Industries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 43-54, January.
    13. Fang Yao & Hans-Georg Müller, 2010. "Functional quadratic regression," Biometrika, Biometrika Trust, vol. 97(1), pages 49-64.
    14. Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
    15. Ghosal, Rahul & Ghosh, Sujit K., 2022. "Bayesian inference for generalized linear model with linear inequality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    16. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    17. Melanie Birke & Holger Dette, 2007. "Estimating a Convex Function in Nonparametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 384-404, June.
    18. M. Ahkim & I. Gijbels & A. Verhasselt, 2017. "Shape testing in varying coefficient models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 429-450, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    2. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    4. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    5. Gao, Zhikun & Tang, Yanlin & Wang, Huixia Judy & Wu, Guangying K. & Lin, Jeff, 2020. "Automatic identification of curve shapes with applications to ultrasonic vocalization," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    6. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    7. Zhang, Xiaoke & Zhong, Qixian & Wang, Jane-Ling, 2020. "A new approach to varying-coefficient additive models with longitudinal covariates," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    8. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    10. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    11. Fang, Xiaolei & Zhou, Rensheng & Gebraeel, Nagi, 2015. "An adaptive functional regression-based prognostic model for applications with missing data," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 266-274.
    12. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
    13. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Fabio Centofanti & Antonio Lepore & Alessandra Menafoglio & Biagio Palumbo & Simone Vantini, 2023. "Adaptive smoothing spline estimator for the function-on-function linear regression model," Computational Statistics, Springer, vol. 38(1), pages 191-216, March.
    15. Mirshani, Ardalan & Reimherr, Matthew, 2021. "Adaptive function-on-scalar regression with a smoothing elastic net," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    16. Zhiqiang Liao, 2024. "Variable selection in convex nonparametric least squares via structured Lasso: An application to the Swedish electricity market," Papers 2409.01911, arXiv.org.
    17. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    18. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    19. Tatiana Komarova & Javier Hidalgo, 2019. "Testing nonparametric shape restrictions," Papers 1909.01675, arXiv.org, revised Jun 2020.
    20. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.