IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2017025.html
   My bibliography  Save this paper

Flexible parametric approach to classical measurement error variance estimation without auxiliary data

Author

Listed:
  • Bertrand, Aurelie
  • Van Keilegom, Ingrid
  • Legrand, Catherine

Abstract

No abstract is available for this item.

Suggested Citation

  • Bertrand, Aurelie & Van Keilegom, Ingrid & Legrand, Catherine, 2017. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," LIDAM Discussion Papers ISBA 2017025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2017025
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A187163/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    2. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    3. Schwarz, M. & Van Bellegem, S., 2010. "Consistent density deconvolution under partially known error distribution," LIDAM Reprints ISBA 2010013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Consistent density deconvolution under partially known error distribution," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 236-241, February.
    5. Zhong Guan, 2016. "Efficient and robust density estimation using Bernstein type polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 250-271, June.
    6. S. M. Schennach & Yingyao Hu, 2013. "Nonparametric Identification and Semiparametric Estimation of Classical Measurement Error Models Without Side Information," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 177-186, March.
    7. Susanne M. Schennach, 2016. "Recent Advances in the Measurement Error Literature," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 341-377, October.
    8. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2014. "A note on the asymptotic behavior of the Bernstein estimator of the copula density," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 480-487.
    9. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    10. Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
    11. Raymond J. Carroll & Kathryn Roeder & Larry Wasserman, 1999. "Flexible Parametric Measurement Error Models," Biometrics, The International Biometric Society, vol. 55(1), pages 44-54, March.
    12. Bertrand, A. & Legrand, C. & Léonard, D. & Van Keilegom, I., 2017. "Robustness of estimation methods in a survival cure model with mismeasured covariates," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 3-18.
    13. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    14. Bertrand, Aurelie & Legrand, Catherine & Leonard, Daniel & Van Keilegom, Ingrid, 2017. "Robustness of estimation methods in a survival cure model with mismeasured covariates," LIDAM Reprints ISBA 2017021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
    2. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    4. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    5. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    6. Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
    7. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.
    8. Li, Mengyan & Ma, Yanyuan & Li, Runze, 2019. "Semiparametric regression for measurement error model with heteroscedastic error," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 320-338.
    9. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    10. Jochmans, Koen & Henry, Marc & Salanié, Bernard, 2017. "Inference On Two-Component Mixtures Under Tail Restrictions," Econometric Theory, Cambridge University Press, vol. 33(3), pages 610-635, June.
    11. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    12. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2017. "Smooth copula-based estimation of the conditional density function with a single covariate," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 39-48.
    13. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    14. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    15. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    16. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    17. Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Nonparametric Frontier Estimation from Noisy Data," IDEI Working Papers 625, Institut d'Économie Industrielle (IDEI), Toulouse.
    18. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    19. Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
    20. Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2017025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.