IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i2p448-459.html
   My bibliography  Save this article

Semiparametric estimation of the nonmixture cure model with auxiliary survival information

Author

Listed:
  • Bo Han
  • Ingrid Van Keilegom
  • Xiaoguang Wang

Abstract

With rapidly increasing data sources, statistical methods that make use of external information are gradually becoming popular tools in medical research. In this article, we efficiently synthesize the auxiliary survival information and propose a semiparametric estimation method for the combined empirical likelihood in the framework of the nonmixture cure model, to enhance inference about the associations between exposures and disease outcomes. The auxiliary survival probabilities from external sources are first summarized as unbiased estimation equations, which help produce more efficient estimates of the effects of interest and improve the prediction accuracy for the risk of the event. Then we develop a Bernstein‐based sieve empirical likelihood method to estimate the parametric and nonparametric components simultaneously. Such an estimation procedure allows us to reduce the computation burden while preserving the shape constraint on the baseline distribution function. The resulting estimators for the true associations are strongly consistent and asymptotically normal. Instead of collecting substantial exposure data, the auxiliary survival information at multiple time points is incorporated, which further reduces the mean squared error of the estimators. This contributes to biomarker evaluation and treatment effect analysis within smaller studies. We show how to choose the number of auxiliary survival probabilities appropriately and provide a guideline for practical applications. Simulation studies demonstrate that the estimators enjoy large gains in efficiency. A melanoma dataset is analyzed for illustrating the methodology.

Suggested Citation

  • Bo Han & Ingrid Van Keilegom & Xiaoguang Wang, 2022. "Semiparametric estimation of the nonmixture cure model with auxiliary survival information," Biometrics, The International Biometric Society, vol. 78(2), pages 448-459, June.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:448-459
    DOI: 10.1111/biom.13450
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13450
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Portier, Francois & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "Efficiency and bootstrap in the promotion time cure model," LIDAM Reprints ISBA 2017019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Ying Sheng & Yifei Sun & Detian Deng & Chiung‐Yu Huang, 2020. "Censored linear regression in the presence or absence of auxiliary survival information," Biometrics, The International Biometric Society, vol. 76(3), pages 734-745, September.
    3. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    4. Chiung-Yu Huang & Jing Qin & Huei-Ting Tsai, 2016. "Efficient Estimation of the Cox Model with Auxiliary Subgroup Survival Information," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 787-799, April.
    5. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    6. Nilanjan Chatterjee & Yi-Hau Chen & Paige Maas & Raymond J. Carroll, 2016. "Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-Level Information From External Big Data Sources," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 107-117, March.
    7. Xue H. & Lam K.F. & Li G., 2004. "Sieve Maximum Likelihood Estimator for Semiparametric Regression Models With Current Status Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 346-356, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Gao & K. C. G. Chan, 2023. "Noniterative adjustment to regression estimators with population‐based auxiliary information for semiparametric models," Biometrics, The International Biometric Society, vol. 79(1), pages 140-150, March.
    2. Ying Sheng & Yifei Sun & Chiung‐Yu Huang & Mi‐Ok Kim, 2022. "Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach," Biometrics, The International Biometric Society, vol. 78(2), pages 679-690, June.
    3. Jie He & Hui Li & Shumei Zhang & Xiaogang Duan, 2019. "Additive hazards model with auxiliary subgroup survival information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 128-149, January.
    4. Ying Sheng & Yifei Sun & Detian Deng & Chiung‐Yu Huang, 2020. "Censored linear regression in the presence or absence of auxiliary survival information," Biometrics, The International Biometric Society, vol. 76(3), pages 734-745, September.
    5. Ziqi Chen & Jing Ning & Yu Shen & Jing Qin, 2021. "Combining primary cohort data with external aggregate information without assuming comparability," Biometrics, The International Biometric Society, vol. 77(3), pages 1024-1036, September.
    6. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    7. Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.
    8. Chen, Yurong & Feng, Yanqin & Sun, Jianguo, 2015. "Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 34-45.
    9. Yu‐Jen Cheng & Yen‐Chun Liu & Chang‐Yu Tsai & Chiung‐Yu Huang, 2023. "Semiparametric estimation of the transformation model by leveraging external aggregate data in the presence of population heterogeneity," Biometrics, The International Biometric Society, vol. 79(3), pages 1996-2009, September.
    10. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    11. Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
    12. Debashis Ghosh & Michael S. Sabel, 2022. "A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 363-379, December.
    13. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    14. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    15. Tian Gu & Jeremy Michael George Taylor & Bhramar Mukherjee, 2023. "A synthetic data integration framework to leverage external summary‐level information from heterogeneous populations," Biometrics, The International Biometric Society, vol. 79(4), pages 3831-3845, December.
    16. Han Zhang & Lu Deng & William Wheeler & Jing Qin & Kai Yu, 2022. "Integrative analysis of multiple case‐control studies," Biometrics, The International Biometric Society, vol. 78(3), pages 1080-1091, September.
    17. Edwin Fourrier-Nicolai & Michel Lubrano, 2022. "Bayesian inference for non-anonymous Growth Incidence Curves using Bernstein polynomials: an application to academic wage dynamics," Working Papers hal-03880243, HAL.
    18. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.
    19. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    20. Shuangge Ma, 2011. "Additive risk model for current status data with a cured subgroup," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 117-134, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:448-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.