My bibliography
Save this item
Bootstrap prediction for returns and volatilities in GARCH models
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017.
"A dynamic component model for forecasting high-dimensional realized covariance matrices,"
Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Discussion Papers CORE 2016001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
- Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020.
"A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities,"
Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
- Gloria Gonzalez-Rivera & Joao Henrique Mazzeu & Esther Ruiz & Helena Veiga, 2017. "A Bootstrap Approach for Generalized Autocontour Testing. Implications for VIX Forecast Densities," Working Papers 201709, University of California at Riverside, Department of Economics.
- Perera, Indeewara & Silvapulle, Mervyn J., 2021. "Bootstrap based probability forecasting in multiplicative error models," Journal of Econometrics, Elsevier, vol. 221(1), pages 1-24.
- Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
- Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
- M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
- Miazhynskaia, Tatiana & Fruhwirth-Schnatter, Sylvia & Dorffner, Georg, 2006. "Bayesian testing for non-linearity in volatility modeling," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2029-2042, December.
- Matteo Grigoletto & Francesco Lisi, 2011. "Practical implications of higher moments in risk management," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(4), pages 487-506, November.
- Corradi, Valentina & Iglesias, Emma M., 2008. "Bootstrap refinements for QML estimators of the GARCH(1,1) parameters," Journal of Econometrics, Elsevier, vol. 144(2), pages 500-510, June.
- Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024.
"A residual bootstrap for conditional Value-at-Risk,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2018. "A Residual Bootstrap for Conditional Value-at-Risk," Papers 1808.09125, arXiv.org, revised Aug 2023.
- Dimingo, Roselyn & Muteba Mwamba, John W. & Bonga-Bonga, Lumengo, 2021. "Prediction of Stock Market Direction: Application of Machine Learning Models," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 74(4), pages 499-536.
- Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2017.
"A Justification of Conditional Confidence Intervals,"
Papers
1710.00643, arXiv.org, revised Jan 2019.
- Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2017. "A Justification of Conditional Confidence Intervals," Research Memorandum 023, Maastricht University, Graduate School of Business and Economics (GSBE).
- Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
- Mahsa Gorji & Rasoul Sajjad, 2017. "Improving Value-at-Risk Estimation from the Normal EGARCH Model," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 11(1), March.
- Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
- Bauwens Luc & Storti Giuseppe, 2009.
"A Component GARCH Model with Time Varying Weights,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
- Giuseppe Storti & Luc Bauwens, 2006. "A component GARCH model with time varying weights," Computing in Economics and Finance 2006 388, Society for Computational Economics.
- BAUWENS, Luc & STORTI, Giuseppe, 2009. "A component GARCH model with time varying weights," LIDAM Reprints CORE 2125, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc, BAUWENS & G., STORTI, 2007. "A Component GARCH Model with Time Varying Weights," Discussion Papers (ECON - Département des Sciences Economiques) 2007012, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & STORTI, Giuseppe, 2007. "A component GARCH model with time varying weights," LIDAM Discussion Papers CORE 2007019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Giacomo Bormetti & Fulvio Corsi, 2021. "A Lucas Critique Compliant SVAR model with Observation-driven Time-varying Parameters," Papers 2107.05263, arXiv.org, revised Feb 2022.
- Wasel Shadat, 2011. "On the Nonparametric Tests of Univariate GARCH Regression Models," Economics Discussion Paper Series 1115, Economics, The University of Manchester.
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011.
"Evaluating Value-at-Risk Models via Quantile Regression,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
- Wagner P. Gaglianone & Luiz Renato Lima & Oliver Linton, 2008. "Evaluating Value-at-Risk Models via Quantile Regressions," Working Papers Series 161, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Linton, Oliver & Lima, Luiz Renato Regis de Oliveira, 2008. "Evaluating Value-at-Risk models via Quantile regressions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 679, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel Smith, 2010. "Evaluating Value-at-Risk Models via Quantile Regression," NCER Working Paper Series 67, National Centre for Econometric Research.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel, 2009. "Evaluating Value-at-Risk models via Quantile Regression," UC3M Working papers. Economics we094625, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017.
"Risk Measure Inference,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 499-512, October.
- Christophe Hurlin & Sebastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2015. "Risk Measure Inference," Working Papers halshs-00877279, HAL.
- Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017. "Risk Measure Inference," Post-Print hal-01457393, HAL.
- Beste Hamiye Beyaztas & Ufuk Beyaztas & Soutir Bandyopadhyay & Wei-Min Huang, 2018. "New and Fast Block Bootstrap-Based Prediction Intervals for GARCH(1,1) Process with Application to Exchange Rates," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 168-194, February.
- Nieto, MarÃa Rosa & Carmona-BenÃtez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
- Fresoli, Diego E. & Ruiz, Esther, 2016.
"The uncertainty of conditional returns, volatilities and correlations in DCC models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
- Fresoli, Diego Eduardo, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
- Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
- Blasques, Francisco & Koopman, Siem Jan & Łasak, Katarzyna & Lucas, André, 2016.
"In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 875-887.
- Francisco Blasques & Siem Jan Koopman & Katarzyna Lasak & André Lucas, 2015. "In-Sample Confidence Bands and Out-of-Sample Forecast Bands for Time-Varying Parameters in Observation Driven Models," Tinbergen Institute Discussion Papers 15-083/III, Tinbergen Institute.
- Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
- Maria Rosa Nieto & Rafael Bernardo Carmona-Benítez, 2021. "An Approach to Measure the Performance and the Efficiency of Future Airport Infrastructure," Mathematics, MDPI, vol. 9(16), pages 1-28, August.
- Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
- M. Chudý & S. Karmakar & W. B. Wu, 2020. "Long-term prediction intervals of economic time series," Empirical Economics, Springer, vol. 58(1), pages 191-222, January.
- Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
- Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Damian Ślusarczyk & Robert Ślepaczuk, 2023. "Optimal Markowitz Portfolio Using Returns Forecasted with Time Series and Machine Learning Models," Working Papers 2023-17, Faculty of Economic Sciences, University of Warsaw.
- Meriem Rjiba & Michail Tsagris & Hedi Mhalla, 2015.
"Bootstrap for Value at Risk Prediction,"
International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(6), pages 362-371.
- Meriem Rjiba, Meriem & Tsagris, Michail & Mhalla, Hedi, 2015. "Bootstrap for Value at Risk Prediction," MPRA Paper 68842, University Library of Munich, Germany.
- Spierdijk, Laura, 2016. "Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 545-559.
- Giordano, Francesco & La Rocca, Michele & Perna, Cira, 2007. "Forecasting nonlinear time series with neural network sieve bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3871-3884, May.
- Goulas, Lambros & Skiadopoulos, George, 2012. "Are freight futures markets efficient? Evidence from IMAREX," International Journal of Forecasting, Elsevier, vol. 28(3), pages 644-659.
- Borovkova, Svetlana & Permana, Ferry J., 2009. "Implied volatility in oil markets," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2022-2039, April.
- P. Gorgi & S. J. Koopman & R. Lit, 2023.
"Estimation of final standings in football competitions with a premature ending: the case of COVID-19,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 233-250, March.
- Paolo Gorgi & Siem Jan Koopman & Rutger Lit, 2020. "Estimation of final standings in football competitions with premature ending: the case of COVID-19," Tinbergen Institute Discussion Papers 20-070/III, Tinbergen Institute.
- Ufuk Beyaztas & Beste H. Beyaztas, 2019. "On Jackknife-After-Bootstrap Method for Dependent Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1613-1632, April.
- González-Rivera, Gloria & Veiga, Helena, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Nieto, María Rosa, 2010. "Bootstrap prediction intervals for VaR and ES in the context of GARCH models," DES - Working Papers. Statistics and Econometrics. WS ws102814, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
- Alexander Heinemann & Sean Telg, 2018. "A Residual Bootstrap for Conditional Expected Shortfall," Papers 1811.11557, arXiv.org.
- Pellegrini, Santiago & Ruiz, Esther & Espasa, Antoni, 2011.
"Prediction intervals in conditionally heteroscedastic time series with stochastic components,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 308-319.
- Pellegrini, Santiago & Ruiz, Esther & Espasa, Antoni, 2011. "Prediction intervals in conditionally heteroscedastic time series with stochastic components," International Journal of Forecasting, Elsevier, vol. 27(2), pages 308-319, April.
- Trucíos, Carlos & Hotta, Luiz K., 2016. "Bootstrap prediction in univariate volatility models with leverage effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 91-103.
- Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
- Bal'azs Csan'ad Cs'aji, 2018. "Score Permutation Based Finite Sample Inference for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Models," Papers 1807.08390, arXiv.org.
- Dimitris N. Politis & Kejin Wu, 2023. "Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence," Stats, MDPI, vol. 6(3), pages 1-29, August.