Forecasting nonlinear time series with neural network sieve bootstrap
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- La Rocca, Michele & Perna, Cira, 2005. "Variable selection in neural network regression models with dependent data: a subsampling approach," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 415-429, February.
- Capobianco, Enrico, 2000. "Neural networks and statistical inference: seeking robust and efficient learning," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 443-454, January.
- Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
- Brodin, Erik, 2006. "On quantile estimation by bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1398-1406, March.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
- Nankervis, John C., 2005. "Computational algorithms for double bootstrap confidence intervals," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 461-475, April.
- Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fuertes, Ana-Maria, 2008. "Sieve bootstrap t-tests on long-run average parameters," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3354-3370, March.
- Xie, Yuying & Li, Chaoshun & Tang, Geng & Liu, Fangjie, 2021. "A novel deep interval prediction model with adaptive interval construction strategy and automatic hyperparameter tuning for wind speed forecasting," Energy, Elsevier, vol. 216(C).
- Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
- Artemisa Zaragoza-Ibarra & Gerardo G. Alfaro-Calderón & Víctor G. Alfaro-García & Fernando Ornelas-Tellez & Rodrigo Gómez-Monge, 2021. "A machine learning model of national competitiveness with regional statistics of public expenditure," Computational and Mathematical Organization Theory, Springer, vol. 27(4), pages 451-468, December.
- Ivan Letteri & Giuseppe Della Penna & Giovanni De Gasperis & Abeer Dyoub, 2022. "A Stock Trading System for a Medium Volatile Asset using Multi Layer Perceptron," Papers 2201.12286, arXiv.org.
- Tsao, Hao-Han & Leu, Yih-Guang & Chou, Li-Fen, 2021. "A center-of-concentrated-based prediction interval for wind power forecasting," Energy, Elsevier, vol. 237(C).
- Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
- Catalina Lucia COCIANU & Hakob GRIGORYAN, 2015. "An Artificial Neural Network for Data Forecasting Purposes," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 19(2), pages 34-45.
- Dimitris N. Politis & Kejin Wu, 2023. "Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence," Stats, MDPI, vol. 6(3), pages 1-29, August.
- Vilar, J.A. & Alonso, A.M. & Vilar, J.M., 2010. "Non-linear time series clustering based on non-parametric forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2850-2865, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- González-Rivera, Gloria & Veiga, Helena, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020.
"A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities,"
Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
- Gloria Gonzalez-Rivera & Joao Henrique Mazzeu & Esther Ruiz & Helena Veiga, 2017. "A Bootstrap Approach for Generalized Autocontour Testing. Implications for VIX Forecast Densities," Working Papers 201709, University of California at Riverside, Department of Economics.
- Felix Wick & Ulrich Kerzel & Martin Hahn & Moritz Wolf & Trapti Singhal & Daniel Stemmer & Jakob Ernst & Michael Feindt, 2021. "Demand Forecasting of Individual Probability Density Functions with Machine Learning," SN Operations Research Forum, Springer, vol. 2(3), pages 1-39, September.
- Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
- Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
- Hendry, David F. & Clements, Michael P., 2003.
"Economic forecasting: some lessons from recent research,"
Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
- David Hendry & Michael P. Clements, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Papers 2002-W11, Economics Group, Nuffield College, University of Oxford.
- Clements, Michael P. & Hendry, David F., 2001. "Economic forecasting: some lessons from recent research," Working Paper Series 82, European Central Bank.
- Hendry, David F & Michael P. Clements, 2002. "Economic Forecasting: Some Lessons from Recent Research," Royal Economic Society Annual Conference 2002 99, Royal Economic Society.
- David Hendry & Michael P. Clements & Department of Economics & University of Warwick, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Series Working Papers 78, University of Oxford, Department of Economics.
- Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
- Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
- González-Rivera, Gloria & Sun, Yingying, 2017.
"Density forecast evaluation in unstable environments,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 416-432.
- Gloria Gonzalez-Rivera & Yingying Sun, 2014. "Density Forecast Evaluation in Unstable Environments," Working Papers 201428, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Yingying Sun, 2016. "Density Forecast Evaluation in Unstable Environments," Working Papers 201606, University of California at Riverside, Department of Economics.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- M. Hashem Pesaran & Paolo Zaffaroni, 2004.
"Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management,"
CESifo Working Paper Series
1358, CESifo.
- Pesaran, M. Hashem & Zaffaroni, Paolo, 2005. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi-Asset Volatility Models for Risk Management," CEPR Discussion Papers 5279, C.E.P.R. Discussion Papers.
- M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk based Evaluation of Large Multi Asset Volatility Models for Risk Management," IEPR Working Papers 04.3, Institute of Economic Policy Research (IEPR).
- Hashem Pesaran & Paolo Zaffaroni & Banca d'Italia), 2004. "Model Averaging and Value-at-Risk based Evaluation of Large Multi Asset Volatility Models for Risk Management," Money Macro and Finance (MMF) Research Group Conference 2004 101, Money Macro and Finance Research Group.
- Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
- Wolfgang Polasek, 2013. "Forecast Evaluations for Multiple Time Series: A Generalized Theil Decomposition," Working Paper series 23_13, Rimini Centre for Economic Analysis.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
- Blueschke-Nikolaeva, V. & Blueschke, D. & Neck, R., 2012.
"Optimal control of nonlinear dynamic econometric models: An algorithm and an application,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3230-3240.
- Viktoria Blüschke-Nikolaeva & Dmitri Blüschke & Reinhard Neck, 2010. "Optimal Control of Nonlinear Dynamic Econometric Models: An Algorithm and an Application," Working Papers 032, COMISEF.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015.
"The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US,"
Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working Papers 201226, University of Pretoria, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working Papers 1209, University of Nevada, Las Vegas , Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working papers 2012-12, University of Connecticut, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working Papers 15-27, Eastern Mediterranean University, Department of Economics.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:8:p:3871-3884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.