My bibliography
Save this item
Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Qu, Yinpeng & Xu, Jian & Sun, Yuanzhang & Liu, Dan, 2021. "A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting," Applied Energy, Elsevier, vol. 304(C).
- Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
- Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
- Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
- Daxini, Rajiv & Wilson, Robin & Wu, Yupeng, 2023. "Modelling the spectral influence on photovoltaic device performance using the average photon energy and the depth of a water absorption band for improved forecasting," Energy, Elsevier, vol. 284(C).
- Lioua Kolsi & Sameer Al-Dahidi & Souad Kamel & Walid Aich & Sahbi Boubaker & Nidhal Ben Khedher, 2022. "Prediction of Solar Energy Yield Based on Artificial Intelligence Techniques for the Ha’il Region, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
- Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Wang, Yiye & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2024. "Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions," Applied Energy, Elsevier, vol. 365(C).
- Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
- José Manuel Gámez Medina & Jorge de la Torre y Ramos & Francisco Eneldo López Monteagudo & Leticia del Carmen Ríos Rodríguez & Diego Esparza & Jesús Manuel Rivas & Leonel Ruvalcaba Arredondo & Alejand, 2022. "Power Factor Prediction in Three Phase Electrical Power Systems Using Machine Learning," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
- Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
- Wang, Jianzhou & Zhou, Yilin & Li, Zhiwu, 2022. "Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm," Applied Energy, Elsevier, vol. 312(C).
- Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
- Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
- Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
- Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
- Moreira, M.O. & Balestrassi, P.P. & Paiva, A.P. & Ribeiro, P.F. & Bonatto, B.D., 2021. "Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
- Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
- Monica Borunda & Adrián Ramírez & Raul Garduno & Gerardo Ruíz & Sergio Hernandez & O. A. Jaramillo, 2022. "Photovoltaic Power Generation Forecasting for Regional Assessment Using Machine Learning," Energies, MDPI, vol. 15(23), pages 1-25, November.
- Spyros Theocharides & Marios Theristis & George Makrides & Marios Kynigos & Chrysovalantis Spanias & George E. Georghiou, 2021. "Comparative Analysis of Machine Learning Models for Day-Ahead Photovoltaic Power Production Forecasting," Energies, MDPI, vol. 14(4), pages 1-22, February.
- Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
- You, Minglei & Wang, Qian & Sun, Hongjian & Castro, Iván & Jiang, Jing, 2022. "Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties," Applied Energy, Elsevier, vol. 305(C).
- Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
- Weihui Xu & Zhaoke Wang & Weishu Wang & Jian Zhao & Miaojia Wang & Qinbao Wang, 2024. "Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners," Energies, MDPI, vol. 17(4), pages 1-19, February.
- Fotopoulou, Maria & Rakopoulos, Dimitrios & Petridis, Stefanos & Drosatos, Panagiotis, 2024. "Assessment of smart grid operation under emergency situations," Energy, Elsevier, vol. 287(C).
- Zhi, Yuan & Yang, Xudong, 2023. "Scenario-based multi-objective optimization strategy for rural PV-battery systems," Applied Energy, Elsevier, vol. 345(C).
- Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
- Tahir, Muhammad Faizan & Yousaf, Muhammad Zain & Tzes, Anthony & El Moursi, Mohamed Shawky & El-Fouly, Tarek H.M., 2024. "Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
- Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
- Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
- Qiu, Lihong & Ma, Wentao & Feng, Xiaoyang & Dai, Jiahui & Dong, Yuzhuo & Duan, Jiandong & Chen, Badong, 2024. "A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique," Applied Energy, Elsevier, vol. 359(C).
- Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
- Grzegorz Drałus & Damian Mazur & Jacek Kusznier & Jakub Drałus, 2023. "Application of Artificial Intelligence Algorithms in Multilayer Perceptron and Elman Networks to Predict Photovoltaic Power Plant Generation," Energies, MDPI, vol. 16(18), pages 1-23, September.
- Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
- Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
- Armando Castillejo-Cuberos & John Boland & Rodrigo Escobar, 2021. "Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach," Energies, MDPI, vol. 14(18), pages 1-24, September.
- Derong Lv & Guojiang Xiong & Xiaofan Fu & Yang Wu & Sheng Xu & Hao Chen, 2022. "Optimal Power Flow with Stochastic Solar Power Using Clustering-Based Multi-Objective Differential Evolution," Energies, MDPI, vol. 15(24), pages 1-21, December.