Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
- Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
- Rubasinghe, Osaka & Zhang, Tingze & Zhang, Xinan & Choi, San Shing & Chau, Tat Kei & Chow, Yau & Fernando, Tyrone & Iu, Herbert Ho-Ching, 2023. "Highly accurate peak and valley prediction short-term net load forecasting approach based on decomposition for power systems with high PV penetration," Applied Energy, Elsevier, vol. 333(C).
- Li, Naiqing & Li, Longhao & Zhang, Fan & Jiao, Ticao & Wang, Shuang & Liu, Xuefeng & Wu, Xinghua, 2023. "Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model," Energy, Elsevier, vol. 277(C).
- Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
- liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
- Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
- Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
- Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Hui Wang & Su Yan & Danyang Ju & Nan Ma & Jun Fang & Song Wang & Haijun Li & Tianyu Zhang & Yipeng Xie & Jun Wang, 2023. "Short-Term Photovoltaic Power Forecasting Based on a Feature Rise-Dimensional Two-Layer Ensemble Learning Model," Sustainability, MDPI, vol. 15(21), pages 1-26, November.
- Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
- Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Wang, Yiye & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2024. "Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions," Applied Energy, Elsevier, vol. 365(C).
- José Manuel Gámez Medina & Jorge de la Torre y Ramos & Francisco Eneldo López Monteagudo & Leticia del Carmen Ríos Rodríguez & Diego Esparza & Jesús Manuel Rivas & Leonel Ruvalcaba Arredondo & Alejand, 2022. "Power Factor Prediction in Three Phase Electrical Power Systems Using Machine Learning," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
- Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
- Yang, Weijia & Sparrow, Sarah N. & Wallom, David C.H., 2024. "A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods," Applied Energy, Elsevier, vol. 368(C).
- Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
- Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
- Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
- Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
- Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
- Derong Lv & Guojiang Xiong & Xiaofan Fu & Yang Wu & Sheng Xu & Hao Chen, 2022. "Optimal Power Flow with Stochastic Solar Power Using Clustering-Based Multi-Objective Differential Evolution," Energies, MDPI, vol. 15(24), pages 1-21, December.
- Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
- Grzegorz Woroniak & Joanna Piotrowska-Woroniak & Anna Woroniak & Edyta Owczarek & Krystyna Giza, 2024. "Analysis of the Hybrid Power-Heating System in a Single-Family Building, along with Ecological Aspects of the Operation," Energies, MDPI, vol. 17(11), pages 1-24, May.
- Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
More about this item
Keywords
bagging; continuous multi-day; nonlinear fusion reconstruction; SSA; XGBoost; ICCEMDAN;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:906-:d:1339272. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.