IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p906-d1339272.html
   My bibliography  Save this article

Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners

Author

Listed:
  • Weihui Xu

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Zhaoke Wang

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Weishu Wang

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Jian Zhao

    (State Grid Henan Electric Power Company Electric Power Science Research Institute, Zhengzhou 450052, China)

  • Miaojia Wang

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Qinbao Wang

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

Abstract

Photovoltaic power generation prediction constitutes a significant research area within the realm of power system artificial intelligence. Accurate prediction of future photovoltaic output is imperative for the optimal dispatchment and secure operation of the power grid. This study introduces a photovoltaic prediction model, termed ICEEMDAN-Bagging-XGBoost, aimed at enhancing the accuracy of photovoltaic power generation predictions. In this paper, the original photovoltaic power data initially undergo decomposition utilizing the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) algorithm, with each intrinsic mode function (IMF) derived from this decomposition subsequently reconstructed into high-frequency, medium-frequency, and low-frequency components. Targeting the high-frequency and medium-frequency components of photovoltaic power, a limiting gradient boosting tree (XGBoost) is employed as the foundational learner in the Bagging parallel ensemble learning method, with the incorporation of a sparrow search algorithm (SSA) to refine the hyperparameters of XGBoost, thereby facilitating more nuanced tracking of the changes in the photovoltaic power’s high-frequency and medium-frequency components. Regarding the low-frequency components, XGBoost-Linear is utilized to enable rapid and precise prediction. In contrast with the conventional superposition reconstruction approach, this study employs XGBoost for the reconstruction of the prediction output’s high-frequency, intermediate-frequency, and low-frequency components. Ultimately, the efficacy of the proposed methodology is substantiated by the empirical operation data from a photovoltaic power station in Hebei Province, China. Relative to integrated and traditional single models, this paper’s model exhibits a markedly enhanced prediction accuracy, thereby offering greater applicational value in scenarios involving short-term photovoltaic power prediction.

Suggested Citation

  • Weihui Xu & Zhaoke Wang & Weishu Wang & Jian Zhao & Miaojia Wang & Qinbao Wang, 2024. "Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners," Energies, MDPI, vol. 17(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:906-:d:1339272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
    2. Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
    3. Rubasinghe, Osaka & Zhang, Tingze & Zhang, Xinan & Choi, San Shing & Chau, Tat Kei & Chow, Yau & Fernando, Tyrone & Iu, Herbert Ho-Ching, 2023. "Highly accurate peak and valley prediction short-term net load forecasting approach based on decomposition for power systems with high PV penetration," Applied Energy, Elsevier, vol. 333(C).
    4. Li, Naiqing & Li, Longhao & Zhang, Fan & Jiao, Ticao & Wang, Shuang & Liu, Xuefeng & Wu, Xinghua, 2023. "Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model," Energy, Elsevier, vol. 277(C).
    5. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    2. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
    3. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    4. Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
    5. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Hui Wang & Su Yan & Danyang Ju & Nan Ma & Jun Fang & Song Wang & Haijun Li & Tianyu Zhang & Yipeng Xie & Jun Wang, 2023. "Short-Term Photovoltaic Power Forecasting Based on a Feature Rise-Dimensional Two-Layer Ensemble Learning Model," Sustainability, MDPI, vol. 15(21), pages 1-26, November.
    7. Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
    8. Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Wang, Yiye & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2024. "Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions," Applied Energy, Elsevier, vol. 365(C).
    9. José Manuel Gámez Medina & Jorge de la Torre y Ramos & Francisco Eneldo López Monteagudo & Leticia del Carmen Ríos Rodríguez & Diego Esparza & Jesús Manuel Rivas & Leonel Ruvalcaba Arredondo & Alejand, 2022. "Power Factor Prediction in Three Phase Electrical Power Systems Using Machine Learning," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    10. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    11. Yang, Weijia & Sparrow, Sarah N. & Wallom, David C.H., 2024. "A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods," Applied Energy, Elsevier, vol. 368(C).
    12. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    13. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    14. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    15. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    16. Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
    17. Derong Lv & Guojiang Xiong & Xiaofan Fu & Yang Wu & Sheng Xu & Hao Chen, 2022. "Optimal Power Flow with Stochastic Solar Power Using Clustering-Based Multi-Objective Differential Evolution," Energies, MDPI, vol. 15(24), pages 1-21, December.
    18. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    19. Grzegorz Woroniak & Joanna Piotrowska-Woroniak & Anna Woroniak & Edyta Owczarek & Krystyna Giza, 2024. "Analysis of the Hybrid Power-Heating System in a Single-Family Building, along with Ecological Aspects of the Operation," Energies, MDPI, vol. 17(11), pages 1-24, May.
    20. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:906-:d:1339272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.