IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v212y2018icp809-819.html
   My bibliography  Save this item

Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yang, Ruitong & Li, Dong & Arıcı, Müslüm & Salazar, Samanta López & Wu, Yangyang & Liu, Changyu & Yıldız, Çağatay, 2023. "Spectrally selective nanoparticle-enhanced phase change materials: A study on data-driven optical/thermal properties and application of energy-saving glazing under different climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  2. Belekoukia, Meltiani & Kalamaras, Evangelos & Tan, Jeannie Z.Y. & Vilela, Filipe & Garcia, Susana & Maroto-Valer, M. Mercedes & Xuan, Jin, 2019. "Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization," Applied Energy, Elsevier, vol. 247(C), pages 517-524.
  3. Liu, Changhui & Qiao, Yu & Du, Peixing & Zhang, Jiahao & Zhao, Jiateng & Liu, Chenzhen & Huo, Yutao & Qi, Cong & Rao, Zhonghao & Yan, Yuying, 2021. "Recent advances of nanofluids in micro/nano scale energy transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  4. Mirnezami, Seyed Abolfazl & Zahedi, Alireza & Shayan Nejad, Ardeshir, 2020. "Thermal optimization of a novel solar/hydro/biomass hybrid renewable system for production of low-cost, high-yield, and environmental-friendly biodiesel," Energy, Elsevier, vol. 202(C).
  5. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
  6. Wang, Tianmi & Si, Qiaoling & Hu, Yang & Tang, Guihua & Chua, Kian Jon, 2023. "Silica aerogel composited with both plasmonic nanoparticles and opacifiers for high-efficiency photo-thermal harvest," Energy, Elsevier, vol. 265(C).
  7. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
  8. Preeti, & Ojjela, Odelu, 2022. "Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 100-122.
  9. Amjad, Muhammad & Gardy, Jabbar & Hassanpour, Ali & Wen, Dongsheng, 2018. "Novel draw solution for forward osmosis based solar desalination," Applied Energy, Elsevier, vol. 230(C), pages 220-231.
  10. Wang, Kongxiang & He, Yan & Liu, Pengyu & Kan, Ankang & Zheng, Zhiheng & Wang, Lingling & Xie, Huaqing & Yu, Wei, 2020. "Highly-efficient nanofluid-based direct absorption solar collector enhanced by reverse-irradiation for medium temperature applications," Renewable Energy, Elsevier, vol. 159(C), pages 652-662.
  11. Luo, Qingyang & Liu, Xianglei & Wang, Haolei & Xu, Qiao & Tian, Yang & Liang, Ting & Liu, Qibin & Liu, Zhan & Yang, Xiaohu & Xuan, Yimin & Li, Yongliang & Ding, Yulong, 2022. "Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics," Applied Energy, Elsevier, vol. 306(PA).
  12. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
  13. Tsogtbilegt Boldoo & Jeonggyun Ham & Honghyun Cho, 2019. "Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid," Energies, MDPI, vol. 12(19), pages 1-17, October.
  14. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
  15. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  16. Minjung Lee & Yunchan Shin & Honghyun Cho, 2020. "Performance Evaluation of Flat Plate and Vacuum Tube Solar Collectors by Applying a MWCNT/Fe 3 O 4 Binary Nanofluid," Energies, MDPI, vol. 13(7), pages 1-17, April.
  17. Tong, Yijie & Boldoo, Tsogtbilegt & Ham, Jeonggyun & Cho, Honghyun, 2020. "Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid," Energy, Elsevier, vol. 196(C).
  18. Shen, Chao & Lv, Guoquan & Wei, Shen & Zhang, Chunxiao & Ruan, Changyun, 2020. "Investigating the performance of a novel solar lighting/heating system using spectrum-sensitive nanofluids," Applied Energy, Elsevier, vol. 270(C).
  19. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
  20. Joseph, Albin & Sreekumar, Sreehari & Thomas, Shijo, 2020. "Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector," Renewable Energy, Elsevier, vol. 162(C), pages 1655-1664.
  21. Choi, Tae Jong & Kim, Sung Hyoun & Jang, Seok Pil & Lin, Lingnan & Kedzierski, M.A., 2020. "Aqueous nanofluids containing paraffin-filled MWCNTs for improving effective specific heat and extinction coefficient," Energy, Elsevier, vol. 210(C).
  22. Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
  23. Wang, Yangjie & Li, Qiang & Xuan, Yimin, 2019. "Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid," Energy, Elsevier, vol. 189(C).
  24. Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
  25. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
  26. Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
  27. Shi, Lei & Hu, Yanwei & Bai, Yijie & He, Yurong, 2020. "Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage," Applied Energy, Elsevier, vol. 263(C).
  28. Zeng, Jia & Xuan, Yimin, 2022. "Direct solar-thermal conversion features of flowing photonic nanofluids," Renewable Energy, Elsevier, vol. 188(C), pages 588-602.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.