IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v193y2022icp100-122.html
   My bibliography  Save this article

Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation

Author

Listed:
  • Preeti,
  • Ojjela, Odelu

Abstract

The current numerical study investigates the thermal performance of four mono-component (i.e., blade-shaped Al2O3, brick-shaped Al2O3, cylinder-shaped Al2O3 or platelet-shaped Al2O3 nanoparticles in 50:50 water–ethylene glycol (EG) base fluid) and four bi-component nanofluids (i.e., blade-shaped Al2O3+SiO2/EG–water, cylinder-shaped Al2O3+SiO2/EG–water, brick-shaped Al2O3+SiO2/EG–water, and platelet-shaped Al2O3+SiO2/EG–water hybrid nanofluids) with the help of mathematical modeling. The non-Newtonian nature of these nanofluids is modeled using second grade viscoelastic fluid model accompanied by the energy equation. The highly non-linear coupled differential equations are solved by shooting method accompanied by 4th order Runge–Kutta method in MATLAB software. The numerical simulations are performed by procuring the data for thermophysical properties from the experimental studies. The effective thermal conductivity and viscosity of the four distinct alumina nanofluids are calculated by the models obtained from the experimental studies. The numerical results reveal that the nanofluid with platelet-shaped Al2O3 nanoparticles is the best heat transporter among the four alumina nanofluids The addition of SiO 2 nanoparticles further accelerates the rate of heat transfer in all four alumina nanofluids. The numerical results that illustrate the influence of nanoparticle volume fraction and thermofluidic parameters on the heat transport phenomenon are also discussed. The MATLAB code developed for the numerical solution is validated against the substantial published literature.

Suggested Citation

  • Preeti, & Ojjela, Odelu, 2022. "Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 100-122.
  • Handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:100-122
    DOI: 10.1016/j.matcom.2021.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421003517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waqas, Hassan & Imran, Muhammad & Hussain, Sajjad & Ahmad, Farooq & Khan, Ilyas & Nisar, Kottakkaran Sooppy & Almatroud, A. Othman, 2020. "Numerical simulation for bioconvection effects on MHD flow of Oldroyd-B nanofluids in a rotating frame stretching horizontally," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 166-182.
    2. Salahuddin, T. & Sakinder, S. & Alharbi, Sayer Obaid & Abdelmalek, Zahra, 2021. "A brief comparative study of gamma alumina–water and gamma alumina–EG nanofluids flow near a solid sphere," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 487-500.
    3. Sheikholeslami, M. & Farshad, Seyyed Ali, 2021. "Investigation of solar collector system with turbulator considering hybrid nanoparticles," Renewable Energy, Elsevier, vol. 171(C), pages 1128-1158.
    4. Zeng, Jia & Xuan, Yimin, 2018. "Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids," Applied Energy, Elsevier, vol. 212(C), pages 809-819.
    5. Hazarika, Silpi & Ahmed, Sahin & Chamkha, Ali J., 2021. "Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: A numerical modeling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 819-837.
    6. Khader, M.M. & Sharma, Ram Prakash, 2021. "Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: Implementing fourth order predictor–corrector FDM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 333-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalpana, G. & Madhura, K.R. & Kudenatti, Ramesh B., 2022. "Numerical study on the combined effects of Brownian motion and thermophoresis on an unsteady magnetohydrodynamics nanofluid boundary layer flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 78-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ur Rahman, Mujeeb & Hayat, Tasawar & Khan, Sohail A. & Alsaedi, A., 2022. "Entropy generation in Sutterby nanomaterials flow due to rotating disk with radiation and magnetic effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 151-165.
    2. Patil, P.M. & Benawadi, Sunil & Shanker, Bandari, 2022. "Influence of mixed convection nanofluid flow over a rotating sphere in the presence of diffusion of liquid hydrogen and ammonia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 764-781.
    3. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    4. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
    5. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    6. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    7. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    8. Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
    9. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    10. Yang, Ruitong & Li, Dong & Arıcı, Müslüm & Salazar, Samanta López & Wu, Yangyang & Liu, Changyu & Yıldız, Çağatay, 2023. "Spectrally selective nanoparticle-enhanced phase change materials: A study on data-driven optical/thermal properties and application of energy-saving glazing under different climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    11. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    12. Hayat, T. & Inayatullah, & Alsaedi, A., 2021. "Development of bioconvection flow of nanomaterial with melting effects," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    13. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Shabbir Ahmad & Kashif Ali & Sohail Ahmad & Jianchao Cai, 2021. "Numerical Study of Lorentz Force Interaction with Micro Structure in Channel Flow," Energies, MDPI, vol. 14(14), pages 1-18, July.
    15. Wang, Yangjie & Li, Qiang & Xuan, Yimin, 2019. "Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid," Energy, Elsevier, vol. 189(C).
    16. Belekoukia, Meltiani & Kalamaras, Evangelos & Tan, Jeannie Z.Y. & Vilela, Filipe & Garcia, Susana & Maroto-Valer, M. Mercedes & Xuan, Jin, 2019. "Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization," Applied Energy, Elsevier, vol. 247(C), pages 517-524.
    17. Minjung Lee & Yunchan Shin & Honghyun Cho, 2020. "Performance Evaluation of Flat Plate and Vacuum Tube Solar Collectors by Applying a MWCNT/Fe 3 O 4 Binary Nanofluid," Energies, MDPI, vol. 13(7), pages 1-17, April.
    18. Farooq, Umar & Waqas, Hassan & Muhammad, Taseer & Imran, Muhammad & Alshomrani, Ali Saleh, 2022. "Computation of nonlinear thermal radiation in magnetized nanofluid flow with entropy generation," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    19. Munawwar Ali Abbas & Bashir Ahmed & Li Chen & Shamas ur Rehman & Muzher Saleem & Wissam Sadiq Khudair, 2022. "Analysis of Entropy Generation on Magnetohydrodynamic Flow with Mixed Convection through Porous Media," Energies, MDPI, vol. 15(3), pages 1-20, February.
    20. Youngho Lee & Hyomin Jeong & Yonmo Sung, 2021. "Thermal Absorption Performance Evaluation of Water-Based Nanofluids (CNTs, Cu, and Al 2 O 3 ) for Solar Thermal Harvesting," Energies, MDPI, vol. 14(16), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:100-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.