IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v204y2017icp181-205.html
   My bibliography  Save this item

Modeling of district load forecasting for distributed energy system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
  2. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
  3. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
  4. Selva Calixto & Marco Cozzini & Giampaolo Manzolini, 2021. "Modelling of an Existing Neutral Temperature District Heating Network: Detailed and Approximate Approaches," Energies, MDPI, vol. 14(2), pages 1-16, January.
  5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  6. Andrés M. Alonso & Francisco J. Nogales & Carlos Ruiz, 2020. "A Single Scalable LSTM Model for Short-Term Forecasting of Massive Electricity Time Series," Energies, MDPI, vol. 13(20), pages 1-19, October.
  7. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
  8. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  9. Akeratana Noppakant & Boonyang Plangklang, 2022. "Improving Energy Management through Demand Response Programs for Low-Rise University Buildings," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
  10. Zhang, Lidong & Li, Jiao & Xu, Xiandong & Liu, Fengrui & Guo, Yuanjun & Yang, Zhile & Hu, Tianyu, 2023. "High spatial granularity residential heating load forecast based on Dendrite net model," Energy, Elsevier, vol. 269(C).
  11. Yang, Xining & Hu, Mingming & Heeren, Niko & Zhang, Chunbo & Verhagen, Teun & Tukker, Arnold & Steubing, Bernhard, 2020. "A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation," Applied Energy, Elsevier, vol. 280(C).
  12. Qian, Fanyue & Gao, Weijun & Yang, Yongwen & Yu, Dan, 2020. "Potential analysis of the transfer learning model in short and medium-term forecasting of building HVAC energy consumption," Energy, Elsevier, vol. 193(C).
  13. Huang, Yunyou & Zhan, Jianfeng & Luo, Chunjie & Wang, Lei & Wang, Nana & Zheng, Daoyi & Fan, Fanda & Ren, Rui, 2019. "An electricity consumption model for synthesizing scalable electricity load curves," Energy, Elsevier, vol. 169(C), pages 674-683.
  14. Wang, Yongli & Wang, Huan & Meng, Xiao & Dong, Huanran & Chen, Xin & Xiang, Hao & Xing, Juntai, 2023. "Considering the dual endogenous-exogenous uncertainty integrated energy multiple load short-term forecast," Energy, Elsevier, vol. 285(C).
  15. Kim, Eui-Jong & He, Xi & Roux, Jean-Jacques & Johannes, Kévyn & Kuznik, Frédéric, 2019. "Fast and accurate district heating and cooling energy demand and load calculations using reduced-order modelling," Applied Energy, Elsevier, vol. 238(C), pages 963-971.
  16. Marzullo, Thibault & Keane, Marcus M. & Geron, Marco & Monaghan, Rory F.D., 2019. "A computational toolchain for the automatic generation of multiple Reduced-Order Models from CFD simulations," Energy, Elsevier, vol. 180(C), pages 511-519.
  17. Yongming Zhang & Zhe Yan & Li Li & Jiawei Yao, 2018. "A Hybrid Building Power Distribution System in Consideration of Supply and Demand-Side: A Short Overview and a Case Study," Energies, MDPI, vol. 11(11), pages 1-19, November.
  18. Adam Maryniak & Marian Banaś & Piotr Michalak & Jakub Szymiczek, 2024. "Forecasting of Daily Heat Production in a District Heating Plant Using a Neural Network," Energies, MDPI, vol. 17(17), pages 1-19, September.
  19. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
  20. Izanloo, Milad & Noorollahi, Younes & Aslani, Alireza, 2021. "Future energy planning to maximize renewable energy share for the south Caspian Sea climate," Renewable Energy, Elsevier, vol. 175(C), pages 660-675.
  21. Guelpa, Elisa & Marincioni, Ludovica & Capone, Martina & Deputato, Stefania & Verda, Vittorio, 2019. "Thermal load prediction in district heating systems," Energy, Elsevier, vol. 176(C), pages 693-703.
  22. Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
  23. Mei, Fei & Zhang, Jiatang & Lu, Jixiang & Lu, Jinjun & Jiang, Yuhan & Gu, Jiaqi & Yu, Kun & Gan, Lei, 2021. "Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations," Energy, Elsevier, vol. 219(C).
  24. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
  25. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
  26. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
  27. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
  28. Pagnini, Luisa & Bracco, Stefano & Delfino, Federico & de-Simón-Martín, Miguel, 2024. "Levelized cost of electricity in renewable energy communities: Uncertainty propagation analysis," Applied Energy, Elsevier, vol. 366(C).
  29. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
  30. Huang, Tian-en & Guo, Qinglai & Sun, Hongbin & Tan, Chin-Woo & Hu, Tianyu, 2019. "A deep spatial-temporal data-driven approach considering microclimates for power system security assessment," Applied Energy, Elsevier, vol. 237(C), pages 36-48.
  31. Selva Calixto & Marco Cozzini & Roberto Fedrizzi & Giampaolo Manzolini, 2024. "A New Method for the Techno-Economic Analysis and the Identification of Expansion Strategies of Neutral-Temperature District Heating and Cooling Systems," Energies, MDPI, vol. 17(9), pages 1-20, April.
  32. Shengzeng Li & Yiwen Zhong & Jiaxiang Lin, 2022. "AWS-DAIE: Incremental Ensemble Short-Term Electricity Load Forecasting Based on Sample Domain Adaptation," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
  33. Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).
  34. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
  35. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
  36. Ye, Chengjin & Ding, Yi & Song, Yonghua & Lin, Zhenzhi & Wang, Lei, 2018. "A data driven multi-state model for distribution system flexible planning utilizing hierarchical parallel computing," Applied Energy, Elsevier, vol. 232(C), pages 9-25.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.