IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14233-d959254.html
   My bibliography  Save this article

Improving Energy Management through Demand Response Programs for Low-Rise University Buildings

Author

Listed:
  • Akeratana Noppakant

    (Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand)

  • Boonyang Plangklang

    (Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand)

Abstract

Recently, energy costs have increased significantly, and energy savings have become more important, leading to the use of different patterns to align with the characteristics of demand-side load. This paper focused on the energy management of low-rise university buildings, examining the demand response related to air conditioning and lighting by measuring the main parameters and characteristics and collecting and managing the data from these parameters and characteristics. This system seeks to control and communicate with the aim of reducing the amount of peak energy using a digital power meter installed inside the main distribution unit, with an RS-485 communication port connected to a data converter and then displayed on a computer screen. The demand response and time response were managed by power management software and an optimization model control algorithm based on using a split type of air conditioning unit. This unit had the highest energy consumption in the building as it works to provide a comfortable environment based on the temperatures inside and outside the building. There was a renewable energy source that compensated for energy usage to decrease the peak load curve when the demand was highest, mostly during business hours. An external power source providing 20 kWh of solar power was connected to an inverter and feeds power into each phase of the main distribution. This was controlled by an energy power management program using a demand response algorithm. After applying real-time intelligent control demand-side management, the efficient system presented in this research could generate energy savings of 25% based on AC control of the lighting system. A comparison of the key system parameters shows the decrease in power energy due to the use of renewable energy and the room temperature control using a combination of split-type air conditioning.

Suggested Citation

  • Akeratana Noppakant & Boonyang Plangklang, 2022. "Improving Energy Management through Demand Response Programs for Low-Rise University Buildings," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14233-:d:959254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    2. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    3. Zhao, Bochao & Ye, Minxiang & Stankovic, Lina & Stankovic, Vladimir, 2020. "Non-intrusive load disaggregation solutions for very low-rate smart meter data," Applied Energy, Elsevier, vol. 268(C).
    4. Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Mohammad Shakeri & Jagadeesh Pasupuleti & Nowshad Amin & Md. Rokonuzzaman & Foo Wah Low & Chong Tak Yaw & Nilofar Asim & Nurul Asma Samsudin & Sieh Kiong Tiong & Chong Kok Hen & Chin Wei Lai, 2020. "An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid," Energies, MDPI, vol. 13(13), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bustos, Roberto & Marín, Luis G. & Navas-Fonseca, Alex & Reyes-Chamorro, Lorenzo & Sáez, Doris, 2023. "Hierarchical energy management system for multi-microgrid coordination with demand-side management," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todic, Tamara & Stankovic, Vladimir & Stankovic, Lina, 2023. "An active learning framework for the low-frequency Non-Intrusive Load Monitoring problem," Applied Energy, Elsevier, vol. 341(C).
    2. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    6. Marzullo, Thibault & Keane, Marcus M. & Geron, Marco & Monaghan, Rory F.D., 2019. "A computational toolchain for the automatic generation of multiple Reduced-Order Models from CFD simulations," Energy, Elsevier, vol. 180(C), pages 511-519.
    7. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    8. Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
    9. Jiaxin Zhang & Zhilin Yu & Yunqin Li & Xueqiang Wang, 2023. "Uncovering Bias in Objective Mapping and Subjective Perception of Urban Building Functionality: A Machine Learning Approach to Urban Spatial Perception," Land, MDPI, vol. 12(7), pages 1-20, June.
    10. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    11. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Selva Calixto & Marco Cozzini & Giampaolo Manzolini, 2021. "Modelling of an Existing Neutral Temperature District Heating Network: Detailed and Approximate Approaches," Energies, MDPI, vol. 14(2), pages 1-16, January.
    13. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    14. Elnaz Azizi & Mohammad T. H. Beheshti & Sadegh Bolouki, 2021. "Event Matching Classification Method for Non-Intrusive Load Monitoring," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    15. Mei, Fei & Zhang, Jiatang & Lu, Jixiang & Lu, Jinjun & Jiang, Yuhan & Gu, Jiaqi & Yu, Kun & Gan, Lei, 2021. "Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations," Energy, Elsevier, vol. 219(C).
    16. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
    17. Tharindu P. De Alwis & S. Yaser Samadi, 2024. "Stacking-based neural network for nonlinear time series analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 901-924, July.
    18. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    19. Apostolos Vavouris & Benjamin Garside & Lina Stankovic & Vladimir Stankovic, 2022. "Low-Frequency Non-Intrusive Load Monitoring of Electric Vehicles in Houses with Solar Generation: Generalisability and Transferability," Energies, MDPI, vol. 15(6), pages 1-27, March.
    20. Yang, Yang & Wang, Xiuqin, 2022. "A novel modified conformable fractional grey time-delay model for power generation prediction," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14233-:d:959254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.