IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v311y2022ics0306261922000551.html
   My bibliography  Save this article

From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems

Author

Listed:
  • Triebs, Merlin Sebastian
  • Tsatsaronis, George

Abstract

Using the heating demand of the final customer as the heat supply input time series in investment or dispatch models of district heating systems could lead to erroneous results. Both thermal losses and the network’s transient behavior lead to a mismatch between heat demand and required heat supply and should be considered. Following the methodology of standard load profiles for natural gas usage, standard load profiles for district heating systems at the plant level are developed by analyzing the measured heat supply of four different district heating systems for multiple years. The derived standard load profiles can be used to consider network transients without a complex physical model. The correction of the transient behavior is coupled with three different options to consider thermal losses in the network. Considering the transient behavior leads to an average reduction in Root Mean Square Error of 35 % compared to the neglection of the transients. Compared to a direct forecast method, the proposed approach shows a 5 % decrease in Root Mean Square Error with an increase in peak load estimation accuracy by 7 percentage points. The proposed methodology is best coupled with loss distribution methods relying on a constant share of the actual load or on the grid’s flow and return temperatures. The proposed method and the published dataset aim to develop annual load profiles for data-scarce district heating networks to serve as an input parameter for long-term dispatch or investment problems.

Suggested Citation

  • Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000551
    DOI: 10.1016/j.apenergy.2022.118571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922000551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    2. Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
    3. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Narula, Kapil & de Oliveira Filho, Fleury & Villasmil, Willy & Patel, Martin K., 2020. "Simulation method for assessing hourly energy flows in district heating system with seasonal thermal energy storage," Renewable Energy, Elsevier, vol. 151(C), pages 1250-1268.
    5. Maciej Bujalski & Paweł Madejski, 2021. "Forecasting of Heat Production in Combined Heat and Power Plants Using Generalized Additive Models," Energies, MDPI, vol. 14(8), pages 1-15, April.
    6. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    7. Heitkoetter, Wilko & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2020. "Regionalised heat demand and power-to-heat capacities in Germany – An open dataset for assessing renewable energy integration," Applied Energy, Elsevier, vol. 259(C).
    8. Schweiger, Gerald & Rantzer, Jonatan & Ericsson, Karin & Lauenburg, Patrick, 2017. "The potential of power-to-heat in Swedish district heating systems," Energy, Elsevier, vol. 137(C), pages 661-669.
    9. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    10. Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Xuejing & Zheng, Wandong & Miao, Qingwei & Lu, Gang, 2017. "Thermal transient prediction of district heating pipeline: Optimal selection of the time and spatial steps for fast and accurate calculation," Applied Energy, Elsevier, vol. 206(C), pages 900-910.
    11. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    12. Guelpa, Elisa, 2020. "Impact of network modelling in the analysis of district heating systems," Energy, Elsevier, vol. 213(C).
    13. Braas, Hagen & Jordan, Ulrike & Best, Isabelle & Orozaliev, Janybek & Vajen, Klaus, 2020. "District heating load profiles for domestic hot water preparation with realistic simultaneity using DHWcalc and TRNSYS," Energy, Elsevier, vol. 201(C).
    14. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    15. Guelpa, Elisa & Marincioni, Ludovica & Capone, Martina & Deputato, Stefania & Verda, Vittorio, 2019. "Thermal load prediction in district heating systems," Energy, Elsevier, vol. 176(C), pages 693-703.
    16. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    17. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    18. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    19. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    20. Shamshirband, Shahaboddin & Petković, Dalibor & Enayatifar, Rasul & Hanan Abdullah, Abdul & Marković, Dušan & Lee, Malrey & Ahmad, Rodina, 2015. "Heat load prediction in district heating systems with adaptive neuro-fuzzy method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 760-767.
    21. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    22. Lotta Kannari & Jussi Kiljander & Kalevi Piira & Jouko Piippo & Pekka Koponen, 2021. "Building Heat Demand Forecasting by Training a Common Machine Learning Model with Physics-Based Simulator," Forecasting, MDPI, vol. 3(2), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vyacheslav Arsenyev & Ján Piteľ & Oleksandr Korol & Serhii Sharapov & Jana Mižáková & Ivan Pavlenko & Vitalii Ivanov, 2023. "An Increase in the Energy Efficiency of R744 Heat-Using Thermotransformers," Energies, MDPI, vol. 16(21), pages 1-16, October.
    2. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    2. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
    3. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    4. Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
    5. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
    6. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    7. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    10. Vahid Arabzadeh & Peter D. Lund, 2020. "Effect of Heat Demand on Integration of Urban Large-Scale Renewable Schemes—Case of Helsinki City (60 °N)," Energies, MDPI, vol. 13(9), pages 1-17, May.
    11. Kurek, Teresa & Bielecki, Artur & Świrski, Konrad & Wojdan, Konrad & Guzek, Michał & Białek, Jakub & Brzozowski, Rafał & Serafin, Rafał, 2021. "Heat demand forecasting algorithm for a Warsaw district heating network," Energy, Elsevier, vol. 217(C).
    12. Wang, Chendong & Yuan, Jianjuan & Zhang, Ji & Deng, Na & Zhou, Zhihua & Gao, Feng, 2020. "Multi-criteria comprehensive study on predictive algorithm of heating energy consumption of district heating station based on timeseries processing," Energy, Elsevier, vol. 202(C).
    13. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    14. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    15. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    16. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    17. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    18. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    19. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    20. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.