IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v202y2017icp558-570.html
   My bibliography  Save this item

Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  2. Mao, Qianjun & Zhu, Yuanyuan & Li, Tao, 2023. "Study on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 263(PA).
  3. Zhao, Yaohua & Liu, Zichu & Quan, Zhenhua & Jing, Heran & Yang, Mingguang, 2022. "Experimental investigation and multi-objective optimization of ice thermal storage device with multichannel flat tube," Renewable Energy, Elsevier, vol. 195(C), pages 28-46.
  4. Ziyuan Huang & Hongming Zhang & Chao Zhang & Wei Tang & Guangming Xiao & Yanxia Du, 2024. "A Pore Scale Study on Heat Transfer Characteristics of Integrated Thermal Protection Structures with Phase Change Material," Energies, MDPI, vol. 17(2), pages 1-15, January.
  5. Abdi, Amir & Martin, Viktoria & Chiu, Justin N.W., 2019. "Numerical investigation of melting in a cavity with vertically oriented fins," Applied Energy, Elsevier, vol. 235(C), pages 1027-1040.
  6. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
  7. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
  8. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
  9. Jalal Faraj & Khaled Chahine & Mostafa Mortada & Thierry Lemenand & Haitham S. Ramadan & Mahmoud Khaled, 2022. "Eco-Efficient Vehicle Cooling Modules with Integrated Diffusers—Thermal, Energy, and Environmental Analyses," Energies, MDPI, vol. 15(21), pages 1-19, October.
  10. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
  11. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
  12. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).
  13. Lv, Laiquan & Huang, Shengyao & Zou, Yang & Wang, Xinyi & Zhou, Hao, 2024. "Thermal performance investigation of a medium-temperature pilot-scale latent heat thermal energy storage system: The constant and step temperatures charging and discharging," Renewable Energy, Elsevier, vol. 225(C).
  14. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
  15. Janusz T. Cieśliński & Maciej Fabrykiewicz, 2023. "Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
  16. Jiang, Ruicheng & Qian, Gao & Li, Zhi & Yu, Xiaoli & Lu, Yiji, 2024. "Progress and challenges of latent thermal energy storage through external field-dependent heat transfer enhancement methods," Energy, Elsevier, vol. 304(C).
  17. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
  18. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
  19. Li, Xinyi & Ma, Ting & Liu, Jun & Zhang, Hao & Wang, Qiuwang, 2018. "Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method," Applied Energy, Elsevier, vol. 222(C), pages 92-103.
  20. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
  21. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
  22. Guo, Junfei & Liu, Zhan & Yang, Bo & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube," Renewable Energy, Elsevier, vol. 183(C), pages 406-422.
  23. Yang, Xiaohu & Guo, Zengxu & Liu, Yanhua & Jin, Liwen & He, Ya-Ling, 2019. "Effect of inclination on the thermal response of composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 22-33.
  24. Huang, Yongping & Liu, Xiangdong, 2021. "Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins," Renewable Energy, Elsevier, vol. 174(C), pages 199-217.
  25. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Liang, L. & Wang, T.Y. & An, Y., 2021. "Optimization of phase change thermal storage units/devices with multichannel flat tubes: A theoretical study," Renewable Energy, Elsevier, vol. 167(C), pages 700-717.
  26. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
  27. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
  28. Lu, Shilei & Zhai, Xue & Gao, Jingxian & Wang, Ran, 2022. "Performance optimization and experimental analysis of a novel low-temperature latent heat thermal energy storage device," Energy, Elsevier, vol. 239(PE).
  29. Kasper, Lukas & Pernsteiner, Dominik & Schirrer, Alexander & Jakubek, Stefan & Hofmann, René, 2023. "Experimental characterization, parameter identification and numerical sensitivity analysis of a novel hybrid sensible/latent thermal energy storage prototype for industrial retrofit applications," Applied Energy, Elsevier, vol. 344(C).
  30. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
  31. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
  32. Choi, Sung Ho & Sohn, Dong Kee & Ko, Han Seo, 2021. "Performance enhancement of latent heat thermal energy storage by bubble-driven flow," Applied Energy, Elsevier, vol. 302(C).
  33. Qianjun Mao & Xinlei Hu & Yuanyuan Zhu, 2022. "Numerical Investigation of Heat Transfer Performance and Structural Optimization of Fan-Shaped Finned Tube Heat Exchanger," Energies, MDPI, vol. 15(15), pages 1-16, August.
  34. Pathak, Saurabh & Jain, Komal & Kumar, Prashant & Wang, Xu & Pant, R.P., 2019. "Improved thermal performance of annular fin-shell tube storage system using magnetic fluid," Applied Energy, Elsevier, vol. 239(C), pages 1524-1535.
  35. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  36. Jiahao Liu & Qingwen Ma & Xianbin Li, 2022. "Numerical Simulation of the Combination of Novel Spiral Fin and Phase Change Material for Cylindrical Lithium-Ion Batteries in Passive Thermal Management," Energies, MDPI, vol. 15(23), pages 1-16, November.
  37. Delfani, Fatemeh & Rahbar, Nader & Aghanajafi, Cyrus & Heydari, Ali & KhalesiDoost, Abdollah, 2021. "Utilization of thermoelectric technology in converting waste heat into electrical power required by an impressed current cathodic protection system," Applied Energy, Elsevier, vol. 302(C).
  38. Yang, Xiaohu & Bai, Qingsong & Guo, Zengxu & Niu, Zhaoyang & Yang, Chun & Jin, Liwen & Lu, Tian Jian & Yan, Jinyue, 2018. "Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 229(C), pages 700-714.
  39. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
  40. Muhammad Saqib & Rafal Andrzejczyk, 2023. "A review of phase change materials and heat enhancement methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
  41. Lu, Bohui & Zhang, Yongxue & Sun, Dong & Jing, Xiaolei, 2021. "Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage," Renewable Energy, Elsevier, vol. 178(C), pages 669-678.
  42. Li, Xinyi & Zhu, Ziliang & Xu, Zirui & Ma, Ting & Zhang, Hao & Liu, Jun & Wang, Xian & Wang, Qiuwang, 2019. "A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process," Applied Energy, Elsevier, vol. 254(C).
  43. Wang, Hang & Hu, Yige & Jiang, Feng & Ling, Xiang, 2022. "Thermal performance of industrial-grade CH3COONa·3H2O-based composite phase change materials in a plate heat storage unit," Energy, Elsevier, vol. 261(PA).
  44. Zhang, Tao & Huo, Dongxin & Wang, Chengyao & Shi, Zhengrong, 2023. "Review of the modeling approaches of phase change processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  45. Wang, Jiahao & Liu, Xiaomin & Desideri, Umberto, 2024. "Performance improvement evaluation of latent heat energy storage units using improved bi-objective topology optimization method," Applied Energy, Elsevier, vol. 364(C).
  46. Zhao, Chunrong & Wang, Jianyong & Sun, Yubiao & He, Suoying & Hooman, Kamel, 2022. "Fin design optimization to enhance PCM melting rate inside a rectangular enclosure," Applied Energy, Elsevier, vol. 321(C).
  47. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  48. Huang, Yongping & Yao, Feng & Liu, Xiangdong, 2021. "Numerical study on the thermal enhancement of horizontal latent heat storage units with hierarchical fins," Renewable Energy, Elsevier, vol. 180(C), pages 383-397.
  49. Zheng, Zhang-Jing & Xu, Yang & Li, Ming-Jia, 2018. "Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance," Applied Energy, Elsevier, vol. 220(C), pages 447-454.
  50. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
  51. Li, Xiuzhen & Chen, Sen & Tan, Yingying & Tian, Guo & Wang, Zhanwei & Tang, Songzhen & Wang, Lin, 2024. "Thermal storage performance of a novel shell-and-tube latent heat storage system: Active role of inner tube improvement and fin distribution optimization," Renewable Energy, Elsevier, vol. 228(C).
  52. Lu, Shilei & Lin, Quanyi & Liu, Yi & Yue, Lu & Wang, Ran, 2022. "Study on thermal performance improvement technology of latent heat thermal energy storage for building heating," Applied Energy, Elsevier, vol. 323(C).
  53. Mohammad Ghalambaz & S.A.M. Mehryan & Mahboobeh Mahdavi & Obai Younis & Mohammad A. Alim, 2021. "Evaluation of the Melting Performance in a Conical Latent Heat Thermal Unit Having Variable Length Fins," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
  54. He, Fan & Bo, Renfei & Hu, Chenxi & Meng, Xi & Gao, Weijun, 2023. "Employing spiral fins to improve the thermal performance of phase-change materials in shell-tube latent heat storage units," Renewable Energy, Elsevier, vol. 203(C), pages 518-528.
  55. Zhanjun Guo & Wu Zhou & Sen Liu & Zhangyang Kang & Rufei Tan, 2023. "Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
  56. Anish., R & Joybari, Mahmood Mastani & Seddegh, Saeid & Mariappan, V. & Haghighat, Fariborz & Yuan, Yanping, 2021. "Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation," Renewable Energy, Elsevier, vol. 163(C), pages 423-436.
  57. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Investigation of a solar-biomass gasification system with the production of methanol and electricity: Thermodynamic, economic and off-design operation," Applied Energy, Elsevier, vol. 243(C), pages 91-101.
  58. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  59. Meng Yu & Xiaowei Sun & Wenjuan Su & Defeng Li & Jun Shen & Xuejun Zhang & Long Jiang, 2022. "Investigation on the Melting Performance of a Phase Change Material Based on a Shell-and-Tube Thermal Energy Storage Unit with a Rectangular Fin Configuration," Energies, MDPI, vol. 15(21), pages 1-15, November.
  60. Zheng, Zhang-Jing & Cai, Xiao & Yang, Chao & Xu, Yang, 2022. "Improving the solidification performance of a latent heat thermal energy storage unit using arrow-shaped fins obtained by an innovative fast optimization algorithm," Renewable Energy, Elsevier, vol. 195(C), pages 566-577.
  61. Serge Nyallang Nyamsi & Ivan Tolj & Mykhaylo Lototskyy, 2019. "Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery," Energies, MDPI, vol. 12(20), pages 1-27, October.
  62. Zhang, Shuai & Yan, Yuying, 2023. "Evaluation and optimisation of hybrid sensible-latent heat thermal energy storage unit with natural stones to enhance heat transfer," Renewable Energy, Elsevier, vol. 215(C).
  63. Yao, Haichen & Liu, Xianglei & Luo, Qingyang & Xu, Qiao & Tian, Yang & Ren, Tianze & Zheng, Hangbin & Gao, Ke & Dang, Chunzhuo & Xuan, Yimin & Liu, Zhan & Yang, Xiaohu & Ding, Yulong, 2022. "Experimental and numerical investigations of solar charging performances of 3D porous skeleton based latent heat storage devices," Applied Energy, Elsevier, vol. 320(C).
  64. Zhu, Rongsheng & Jing, Dalei, 2024. "Numerical study on the discharging performance of a latent heat thermal energy storage system with fractal tree-shaped convergent fins," Renewable Energy, Elsevier, vol. 221(C).
  65. Bie, Yu & Li, Ming & Chen, Fei & Królczyk, Grzegorz & Yang, Lin & Li, Zhixiong & Li, Weihua, 2019. "A novel empirical heat transfer model for a solar thermal storage process using phase change materials," Energy, Elsevier, vol. 168(C), pages 222-234.
  66. Pizzolato, Alberto & Sharma, Ashesh & Ge, Ruihuan & Maute, Kurt & Verda, Vittorio & Sciacovelli, Adriano, 2020. "Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements," Energy, Elsevier, vol. 203(C).
  67. Yang, Xiaohu & Bai, Qingsong & Zhang, Qunli & Hu, Wenju & Jin, Liwen & Yan, Jinyue, 2018. "Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage," Applied Energy, Elsevier, vol. 225(C), pages 585-599.
  68. Egea, A. & Solano, J.P. & Pérez-García, J. & García, A., 2020. "Solar-driven melting dynamics in a shell and tube thermal energy store: An experimental analysis," Renewable Energy, Elsevier, vol. 154(C), pages 1044-1052.
  69. Liu, Y.K. & Tao, Y.B., 2018. "Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory," Applied Energy, Elsevier, vol. 227(C), pages 488-496.
  70. Zhang, Shuai & Yan, Yuying, 2023. "Energy, exergy and economic analysis of ceramic foam-enhanced molten salt as phase change material for medium- and high-temperature thermal energy storage," Energy, Elsevier, vol. 262(PA).
  71. Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.