Solar-driven melting dynamics in a shell and tube thermal energy store: An experimental analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.03.078
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xue, H. Sheng, 2016. "Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage," Renewable Energy, Elsevier, vol. 86(C), pages 257-261.
- Joybari, Mahmood Mastani & Seddegh, Saeid & Wang, Xiaolin & Haghighat, Fariborz, 2019. "Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 140(C), pages 234-244.
- Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
- Khan, Zakir & Khan, Zulfiqar Ahmad, 2017. "Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications," Applied Energy, Elsevier, vol. 206(C), pages 1158-1168.
- Gasia, Jaume & Diriken, Jan & Bourke, Malcolm & Van Bael, Johan & Cabeza, Luisa F., 2017. "Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 114(PB), pages 934-944.
- Wei, Gaosheng & Wang, Gang & Xu, Chao & Ju, Xing & Xing, Lijing & Du, Xiaoze & Yang, Yongping, 2018. "Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1771-1786.
- Fadl, Mohamed & Eames, Philip C., 2019. "An experimental investigation of the heat transfer and energy storage characteristics of a compact latent heat thermal energy storage system for domestic hot water applications," Energy, Elsevier, vol. 188(C).
- Abujas, Carlos R. & Jové, Aleix & Prieto, Cristina & Gallas, Manuel & Cabeza, Luisa F., 2016. "Performance comparison of a group of thermal conductivity enhancement methodology in phase change material for thermal storage application," Renewable Energy, Elsevier, vol. 97(C), pages 434-443.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Mohamed Fadl & Philip Eames, 2020. "Thermal Performance Analysis of the Charging/Discharging Process of a Shell and Horizontally Oriented Multi-Tube Latent Heat Storage System," Energies, MDPI, vol. 13(23), pages 1-23, November.
- Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Muhammad Saqib & Rafal Andrzejczyk, 2023. "A review of phase change materials and heat enhancement methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
- Zhanjun Guo & Wu Zhou & Sen Liu & Zhangyang Kang & Rufei Tan, 2023. "Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
- Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
- Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
- Mohamed Fadl & Philip Eames, 2020. "Thermal Performance Analysis of the Charging/Discharging Process of a Shell and Horizontally Oriented Multi-Tube Latent Heat Storage System," Energies, MDPI, vol. 13(23), pages 1-23, November.
- Abdi, Amir & Martin, Viktoria & Chiu, Justin N.W., 2019. "Numerical investigation of melting in a cavity with vertically oriented fins," Applied Energy, Elsevier, vol. 235(C), pages 1027-1040.
- Bie, Yu & Li, Ming & Chen, Fei & Królczyk, Grzegorz & Yang, Lin & Li, Zhixiong & Li, Weihua, 2019. "A novel empirical heat transfer model for a solar thermal storage process using phase change materials," Energy, Elsevier, vol. 168(C), pages 222-234.
- Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
- Nishant Modi & Xiaolin Wang & Michael Negnevitsky, 2023. "Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges," Energies, MDPI, vol. 16(4), pages 1-20, February.
- Ait Laasri, Imad & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Energy performance assessment of a novel enhanced solar thermal system with topology optimized latent heat thermal energy storage unit for domestic water heating," Renewable Energy, Elsevier, vol. 224(C).
- Mohammad Ghalambaz & S.A.M. Mehryan & Mahboobeh Mahdavi & Obai Younis & Mohammad A. Alim, 2021. "Evaluation of the Melting Performance in a Conical Latent Heat Thermal Unit Having Variable Length Fins," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
- Anish., R & Joybari, Mahmood Mastani & Seddegh, Saeid & Mariappan, V. & Haghighat, Fariborz & Yuan, Yanping, 2021. "Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation," Renewable Energy, Elsevier, vol. 163(C), pages 423-436.
- Pu, Liang & Zhang, Shengqi & Xu, Lingling & Ma, Zhenjun & Wang, Xinke, 2021. "Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam," Renewable Energy, Elsevier, vol. 174(C), pages 573-589.
- Guo, Junfei & Liu, Zhan & Yang, Bo & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube," Renewable Energy, Elsevier, vol. 183(C), pages 406-422.
- Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
- Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
- Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Saranprabhu, M.K. & Rajan, K.S., 2019. "Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 141(C), pages 451-459.
- Zhao, Yaohua & Liu, Zichu & Quan, Zhenhua & Jing, Heran & Yang, Mingguang, 2022. "Experimental investigation and multi-objective optimization of ice thermal storage device with multichannel flat tube," Renewable Energy, Elsevier, vol. 195(C), pages 28-46.
- Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
More about this item
Keywords
PCM; Melting; Heat transfer coefficient; Solar energy; Experimental;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:1044-1052. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.