My bibliography
Save this item
Harvesting ambient wind energy with an inverted piezoelectric flag
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
- Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
- Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
- Yonghyeon Na & Sahn Nahm & Young Hun Jeong, 2022. "Hammer Impact-Driven Power Generator Using Buzzer-Type Piezoelectric Energy Converter for Wind Power Generator Applications," Energies, MDPI, vol. 15(21), pages 1-16, November.
- Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
- Johar, Muhammad Ali & Kang, Jin-Ho & Hassan, Mostafa Afifi & Ryu, Sang-Wan, 2018. "A scalable, flexible and transparent GaN based heterojunction piezoelectric nanogenerator for bending, air-flow and vibration energy harvesting," Applied Energy, Elsevier, vol. 222(C), pages 781-789.
- Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
- Ebrahimian, Fariba & Kabirian, Zohre & Younesian, Davood & Eghbali, Pezhman, 2021. "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, Elsevier, vol. 295(C).
- Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
- Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
- Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
- He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
- Liu, Feng-Rui & Zhang, Wen-Ming & Zhao, Lin-Chuan & Zou, Hong-Xiang & Tan, Ting & Peng, Zhi-Ke & Meng, Guang, 2020. "Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates," Applied Energy, Elsevier, vol. 257(C).
- Wang, Yuan & Zhu, Xin & Zhang, Tingsheng & Bano, Shehar & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping, 2018. "A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film," Applied Energy, Elsevier, vol. 230(C), pages 52-61.
- Hwang, Wonseop & Kim, Kyung-Bum & Cho, Jae Yong & Yang, Chan Ho & Kim, Jung Hun & Song, Gyeong Ju & Song, Yewon & Jeon, Deok Hwan & Ahn, Jung Hwan & Do Hong, Seong & Kim, Jihoon & Lee, Tae Hee & Choi,, 2019. "Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway," Applied Energy, Elsevier, vol. 243(C), pages 313-320.
- Javed, U. & Abdelkefi, A., 2018. "Role of the galloping force and moment of inertia of inclined square cylinders on the performance of hybrid galloping energy harvesters," Applied Energy, Elsevier, vol. 231(C), pages 259-276.
- Zhao, Liya & Yang, Yaowen, 2018. "An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting," Applied Energy, Elsevier, vol. 212(C), pages 233-243.
- Wijewardhana, K. Rohana & Shen, Tian-Zi & Song, Jang-Kun, 2017. "Energy harvesting using air bubbles on hydrophobic surfaces containing embedded charges," Applied Energy, Elsevier, vol. 206(C), pages 432-438.
- Shin, Youn-Hwan & Jung, Inki & Noh, Myoung-Sub & Kim, Jeong Hun & Choi, Ji-Young & Kim, Sangtae & Kang, Chong-Yun, 2018. "Piezoelectric polymer-based roadway energy harvesting via displacement amplification module," Applied Energy, Elsevier, vol. 216(C), pages 741-750.
- Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
- Latif, U. & Uddin, E. & Younis, M.Y. & Aslam, J. & Ali, Z. & Sajid, M. & Abdelkefi, A., 2021. "Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder," Energy, Elsevier, vol. 215(PB).
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
- Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
- Cho, Jae Yong & Kim, Jihoon & Kim, Kyung-Bum & Ryu, Chul Hee & Hwang, Wonseop & Lee, Tae Hee & Sung, Tae Hyun, 2019. "Significant power enhancement method of magneto-piezoelectric energy harvester through directional optimization of magnetization for autonomous IIoT platform," Applied Energy, Elsevier, vol. 254(C).
- Guo, Zijian & Liu, Tanghong & Xu, Kai & Wang, Junyan & Li, Wenhui & Chen, Zhengwei, 2020. "Parametric analysis and optimization of a simple wind turbine in high speed railway tunnels," Renewable Energy, Elsevier, vol. 161(C), pages 825-835.
- Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
- Yurchenko, D. & Lai, Z.H. & Thomson, G. & Val, D.V. & Bobryk, R.V., 2017. "Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer," Applied Energy, Elsevier, vol. 208(C), pages 456-470.
- Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
- Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
- Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
- Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
- Areeba Naqvi & Ahsan Ali & Wael A. Altabey & Sallam A. Kouritem, 2022. "Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review," Energies, MDPI, vol. 15(19), pages 1-35, October.
- Hassan Elahi & Khushboo Munir & Marco Eugeni & Sofiane Atek & Paolo Gaudenzi, 2020. "Energy Harvesting towards Self-Powered IoT Devices," Energies, MDPI, vol. 13(21), pages 1-31, October.
- Tian, Haigang & Shan, Xiaobiao & Li, Xia & Wang, Junlei, 2023. "Enhanced airfoil-based flutter piezoelectric energy harvester via coupling magnetic force," Applied Energy, Elsevier, vol. 340(C).
- Salazar, R. & Abdelkefi, A., 2020. "Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles," Applied Energy, Elsevier, vol. 263(C).
- Natanael Karjanto, 2022. "Seeking Genuine Vocations through Sustainability in Chemical Engineering," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
- Sultana, Ayesha & Alam, Md. Mehebub & Middya, Tapas Ranjan & Mandal, Dipankar, 2018. "A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat," Applied Energy, Elsevier, vol. 221(C), pages 299-307.
- Silva-Leon, Jorge & Cioncolini, Andrea & Nabawy, Mostafa R.A. & Revell, Alistair & Kennaugh, Andrew, 2019. "Simultaneous wind and solar energy harvesting with inverted flags," Applied Energy, Elsevier, vol. 239(C), pages 846-858.
- Dudem, Bhaskar & Kim, Dong Hyun & Bharat, L. Krishna & Yu, Jae Su, 2018. "Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 865-874.
- Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
- Abdelmoula, H. & Sharpes, N. & Abdelkefi, A. & Lee, H. & Priya, S., 2017. "Low-frequency Zigzag energy harvesters operating in torsion-dominant mode," Applied Energy, Elsevier, vol. 204(C), pages 413-419.
- Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
- Jie Wang & Mostafa R. A. Nabawy & Andrea Cioncolini & Alistair Revell, 2019. "Solar Panels as Tip Masses in Low Frequency Vibration Harvesters," Energies, MDPI, vol. 12(20), pages 1-20, October.
- Mujtaba, A. & Latif, U. & Uddin, E. & Younis, M.Y. & Sajid, M. & Ali, Z. & Abdelkefi, A., 2021. "Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body’s wakes," Applied Energy, Elsevier, vol. 282(PA).
- Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
- Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
- Jie Wang & Mostafa R. A. Nabawy & Andrea Cioncolini & Alistair Revell & Samuel Weigert, 2021. "Planform Geometry and Excitation Effects of PVDF-Based Vibration Energy Harvesters," Energies, MDPI, vol. 14(1), pages 1-21, January.
- Aquino, Angelo I. & Calautit, John Kaiser & Hughes, Ben Richard, 2017. "Evaluation of the integration of the Wind-Induced Flutter Energy Harvester (WIFEH) into the built environment: Experimental and numerical analysis," Applied Energy, Elsevier, vol. 207(C), pages 61-77.
- Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Wang, Xingju, 2019. "Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Zhuang Lu & Quan Wen & Xianming He & Zhiyu Wen, 2019. "A Nonlinear Broadband Electromagnetic Vibration Energy Harvester Based on Double-Clamped Beam," Energies, MDPI, vol. 12(14), pages 1-12, July.
- Cho, Jae Yong & Kim, Kyung-Bum & Hwang, Won Seop & Yang, Chan Ho & Ahn, Jung Hwan & Hong, Seong Do & Jeon, Deok Hwan & Song, Gyeong Ju & Ryu, Chul Hee & Woo, Sang Bum & Kim, Jihoon & Lee, Tae Hee & Ch, 2019. "A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system," Applied Energy, Elsevier, vol. 242(C), pages 294-301.
- Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Naseer, R. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2017. "Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics," Applied Energy, Elsevier, vol. 203(C), pages 142-153.
- Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.
- Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
- Tian, Haigang & Shan, Xiaobiao & Sui, Guangdong & Xie, Tao, 2022. "Enhanced performance of piezoaeroelastic energy harvester with rod-shaped attachments," Energy, Elsevier, vol. 238(PB).
- Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.