IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v168y2016icp550-567.html
   My bibliography  Save this item

A generalized model for wind turbine anomaly identification based on SCADA data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
  2. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
  3. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
  4. Francesc Pozo & Yolanda Vidal & Óscar Salgado, 2018. "Wind Turbine Condition Monitoring Strategy through Multiway PCA and Multivariate Inference," Energies, MDPI, vol. 11(4), pages 1-19, March.
  5. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
  6. Ruiz de la Hermosa González-Carrato, Raúl, 2018. "Wind farm monitoring using Mahalanobis distance and fuzzy clustering," Renewable Energy, Elsevier, vol. 123(C), pages 526-540.
  7. Sarah Barber & Luiz Andre Moyses Lima & Yoshiaki Sakagami & Julian Quick & Effi Latiffianti & Yichao Liu & Riccardo Ferrari & Simon Letzgus & Xujie Zhang & Florian Hammer, 2022. "Enabling Co-Innovation for a Successful Digital Transformation in Wind Energy Using a New Digital Ecosystem and a Fault Detection Case Study," Energies, MDPI, vol. 15(15), pages 1-32, August.
  8. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
  9. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
  10. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
  11. Fan Zhang & Juchuan Dai & Deshun Liu & Linxing Li & Xin Long, 2019. "Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data," Energies, MDPI, vol. 12(3), pages 1-20, February.
  12. Mian Du & Jun Yi & Peyman Mazidi & Lin Cheng & Jianbo Guo, 2017. "A Parameter Selection Method for Wind Turbine Health Management through SCADA Data," Energies, MDPI, vol. 10(2), pages 1-14, February.
  13. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
  14. Qu, Fuming & Liu, Jinhai & Zhu, Hongfei & Zhou, Bowen, 2020. "Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic," Applied Energy, Elsevier, vol. 262(C).
  15. Chen, Junsheng & Li, Jian & Chen, Weigen & Wang, Youyuan & Jiang, Tianyan, 2020. "Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders," Renewable Energy, Elsevier, vol. 147(P1), pages 1469-1480.
  16. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
  17. Sun, Chuan & Chen, Yueyi & Cheng, Cheng, 2021. "Imputation of missing data from offshore wind farms using spatio-temporal correlation and feature correlation," Energy, Elsevier, vol. 229(C).
  18. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
  19. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
  20. Cheng Xiao & Zuojun Liu & Tieling Zhang & Lei Zhang, 2019. "On Fault Prediction for Wind Turbine Pitch System Using Radar Chart and Support Vector Machine Approach," Energies, MDPI, vol. 12(14), pages 1-18, July.
  21. Sarah Barber & Unai Izagirre & Oscar Serradilla & Jon Olaizola & Ekhi Zugasti & Jose Ignacio Aizpurua & Ali Eftekhari Milani & Frank Sehnke & Yoshiaki Sakagami & Charles Henderson, 2023. "Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation," Energies, MDPI, vol. 16(8), pages 1-23, April.
  22. Peyman Mazidi & Mian Du & Lina Bertling Tjernberg & Miguel A Sanz Bobi, 2017. "A health condition model for wind turbine monitoring through neural networks and proportional hazard models," Journal of Risk and Reliability, , vol. 231(5), pages 481-494, October.
  23. Song, Dongran & Yang, Jian & Su, Mei & Liu, Anfeng & Cai, Zili & Liu, Yao & Joo, Young Hoon, 2017. "A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation," Energy, Elsevier, vol. 138(C), pages 816-830.
  24. Angel Gil & Miguel A. Sanz-Bobi & Miguel A. Rodríguez-López, 2018. "Behavior Anomaly Indicators Based on Reference Patterns—Application to the Gearbox and Electrical Generator of a Wind Turbine," Energies, MDPI, vol. 11(1), pages 1-15, January.
  25. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
  26. Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
  27. Jingchun Chu & Ling Yuan & Yang Hu & Chenyang Pan & Lei Pan, 2019. "Comparative Analysis of Identification Methods for Mechanical Dynamics of Large-Scale Wind Turbine," Energies, MDPI, vol. 12(18), pages 1-24, September.
  28. Dai, Juchuan & Li, Mimi & Zhang, Fan & Zeng, Huifan, 2024. "Field load testing of wind turbines based on the relational model of strain vs load," Renewable Energy, Elsevier, vol. 221(C).
  29. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
  30. Moghaddass, Ramin & Sheng, Shuangwen, 2019. "An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework," Applied Energy, Elsevier, vol. 240(C), pages 561-582.
  31. Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.