IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v154y2015icp13-20.html
   My bibliography  Save this item

Multiplicative decomposition of aggregate carbon intensity change using input–output analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
  2. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
  3. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
  4. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  5. Yu, Shiwei & Zheng, Shuhong & Li, Xia, 2018. "The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization," Energy Economics, Elsevier, vol. 74(C), pages 693-707.
  6. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
  7. Feng Dong & Ruyin Long & Zhuolin Li & Yuanju Dai, 2016. "Analysis of carbon emission intensity, urbanization and energy mix: evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1375-1391, June.
  8. Markandya, Anil & Arto, Iñaki & González-Eguino, Mikel & Román, Maria V., 2016. "Towards a green energy economy? Tracking the employment effects of low-carbon technologies in the European Union," Applied Energy, Elsevier, vol. 179(C), pages 1342-1350.
  9. Moreau, Vincent & Vuille, François, 2018. "Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade," Applied Energy, Elsevier, vol. 215(C), pages 54-62.
  10. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
  11. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
  12. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
  13. Yongyou Nie & Yunhuan Gao & He He, 2022. "Modelling Structural Effect and Linkage on Carbon Emissions in China: An Environmentally Extended Semi-Closed Ghosh Input–Output Model," Energies, MDPI, vol. 15(17), pages 1-17, August.
  14. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
  15. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
  16. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
  17. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
  18. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
  19. Li, Xi & Zhang, Runsen & Chen, Jundong & Jiang, Yida & Zhang, Qiong & Long, Yin, 2021. "Urban-scale carbon footprint evaluation based on citizen travel demand in Japan," Applied Energy, Elsevier, vol. 286(C).
  20. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
  21. Shi, Qiaoling & Zhao, Yuhuan & Qian, Zhiling & Zheng, Lu & Wang, Song, 2022. "Global value chains participation and carbon emissions: Evidence from Belt and Road countries," Applied Energy, Elsevier, vol. 310(C).
  22. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
  23. Wang, Saige & Chen, Bin, 2018. "Three-Tier carbon accounting model for cities," Applied Energy, Elsevier, vol. 229(C), pages 163-175.
  24. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
  25. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
  26. Jingcheng Li & Menggang Li, 2022. "Research of Carbon Emission Reduction Potentials in the Yellow River Basin, Based on Cluster Analysis and the Logarithmic Mean Divisia Index (LMDI) Method," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
  27. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
  28. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
  29. Deng, Guangyao & Xu, Yan, 2017. "Accounting and structure decomposition analysis of embodied carbon trade: A global perspective," Energy, Elsevier, vol. 137(C), pages 140-151.
  30. Zafrilla, Jorge-Enrique & Arce, Guadalupe & Cadarso, María-Ángeles & Córcoles, Carmen & Gómez, Nuria & López, Luis-Antonio & Monsalve, Fabio & Tobarra, María-Ángeles, 2019. "Triple bottom line analysis of the Spanish solar photovoltaic sector: A footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  31. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
  32. Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
  33. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
  34. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
  35. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
  36. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
  37. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
  38. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
  39. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
  40. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
  41. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
  42. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
  43. Fu, Xue & Lahr, Michael & Yaxiong, Zhang & Meng, Bo, 2017. "Actions on climate change, Intended Reducing carbon emissions in China via optimal industry shifts: Toward hi-tech industries, cleaner resources and higher carbon shares in less-develop regions," Energy Policy, Elsevier, vol. 102(C), pages 616-638.
  44. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
  45. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
  46. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
  47. Huang, Junbing & Liu, Qiang & Cai, Xiaochen & Hao, Yu & Lei, Hongyan, 2018. "The effect of technological factors on China's carbon intensity: New evidence from a panel threshold model," Energy Policy, Elsevier, vol. 115(C), pages 32-42.
  48. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  49. Feng Feng & Linlin Peng, 2019. "Is There Any Difference in the Effect of Different R and D Sources on Carbon Intensity in China?," Sustainability, MDPI, vol. 11(6), pages 1-12, March.
  50. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
  51. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
  52. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
  53. Shihong Zeng & Jiuying Chen, 2016. "Forecasting the Allocation Ratio of Carbon Emission Allowance Currency for 2020 and 2030 in China," Sustainability, MDPI, vol. 8(7), pages 1-28, July.
  54. Wanlin Yu & Jinlong Luo, 2022. "Impact on Carbon Intensity of Carbon Emission Trading—Evidence from a Pilot Program in 281 Cities in China," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
  55. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
  56. Thomakos, Dimitrios D. & Alexopoulos, Thomas A., 2016. "Carbon intensity as a proxy for environmental performance and the informational content of the EPI," Energy Policy, Elsevier, vol. 94(C), pages 179-190.
  57. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
  58. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
  59. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
  60. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
  61. Liu, Nan & Ma, Zujun & Kang, Jidong, 2015. "Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis," Energy Policy, Elsevier, vol. 87(C), pages 28-38.
  62. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
  63. Wu, Ya & Zhu, Qianwen & Zhong, Ling & Zhang, Tao, 2019. "Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 349-360.
  64. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
  65. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
  66. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
  67. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
  68. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
  69. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
  70. Qianqian Guo & Zhifang Su & Chaoshin Chiao, 2022. "Carbon emissions trading policy, carbon finance, and carbon emissions reduction: evidence from a quasi-natural experiment in China," Economic Change and Restructuring, Springer, vol. 55(3), pages 1445-1480, August.
  71. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
  72. Zhao, Yuhuan & Liu, Ya & Qiao, Xiaoyong & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Li, Hao, 2018. "Tracing value added in gross exports of China: Comparison with the USA, Japan, Korea, and India based on generalized LMDI," China Economic Review, Elsevier, vol. 49(C), pages 24-44.
  73. Li, Jiajia & Li, Jun & Zhang, Jian, 2024. "Can digitalization facilitate low carbon lifestyle? --Evidence from households’ embedded emissions in China," Technology in Society, Elsevier, vol. 76(C).
  74. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
  75. Chen, Shaoqing & Zhu, Feiyao, 2019. "Unveiling key drivers of urban embodied and controlled carbon footprints," Applied Energy, Elsevier, vol. 235(C), pages 835-845.
  76. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
  77. Han Sun & Chao Huang & Shan Ni, 2022. "Driving factors of consumption-based PM2.5 emissions in China: an application of the generalized Divisia index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10209-10231, August.
  78. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
  79. Peng Qi & Jianlei Lang & Xiaoqi Wang & Ying Zhou & Haoyun Qi & Shuiyuan Cheng, 2024. "The Coordinated Effects of CO 2 and Air Pollutant Emission Changes Induced by Inter-Provincial Trade in China," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
  80. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
  81. H. Wang & Chen Pan & P. Zhou, 2019. "Assessing the Role of Domestic Value Chains in China’s CO2 Emission Intensity: A Multi-Region Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 865-890, October.
  82. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
  83. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
  84. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2017. "Energy-economic recovery resilience with Input-Output linear programming models," Energy Economics, Elsevier, vol. 68(C), pages 177-191.
  85. Liu, Lirong & Huang, Gordon & Baetz, Brian & Cheng, Guanhui & Pittendrigh, Scott M. & Pan, Siyue, 2020. "Input-output modeling analysis with a detailed disaggregation of energy sectors for climate change policy-making: A case study of Saskatchewan, Canada," Renewable Energy, Elsevier, vol. 151(C), pages 1307-1317.
  86. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
  87. Jincai Zhao & Qianqian Liu, 2021. "Examining the Driving Factors of Urban Residential Carbon Intensity Using the LMDI Method: Evidence from China’s County-Level Cities," IJERPH, MDPI, vol. 18(8), pages 1-18, April.
  88. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
  89. Liu, Lirong & Huang, Guohe & Baetz, Brian & Guan, Yuru & Zhang, Kaiqiang, 2020. "Multi-Dimensional Hypothetical Fuzzy Risk Simulation model for Greenhouse Gas mitigation policy development," Applied Energy, Elsevier, vol. 261(C).
  90. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
  91. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
  92. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
  93. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
  94. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
  95. Xuemei Jia & Qing Liu & Jiahao Feng & Yuru Li & Lijun Zhang, 2023. "The Induced Effects of Carbon Emissions for China’s Industry Digital Transformation," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
  96. Belaïd, Fateh & Massié, Camille, 2023. "The viability of energy efficiency in facilitating Saudi Arabia's journey toward net-zero emissions," Energy Economics, Elsevier, vol. 124(C).
  97. Mingjuan Ma & Shuifa Ke & Qiang Li & Yaqi Wu, 2023. "Towards Carbon Neutrality: A Comprehensive Analysis on Total Factor Carbon Productivity of the Yellow River Basin, China," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
  98. Hongze Li & FengYun Li & Xinhua Yu, 2018. "China’s Contributions to Global Green Energy and Low-Carbon Development: Empirical Evidence under the Belt and Road Framework," Energies, MDPI, vol. 11(6), pages 1-32, June.
  99. Guangming Rao & Bin Su & Jinlian Li & Yong Wang & Yanhua Zhou & Zhaolin Wang, 2019. "Carbon Sequestration Total Factor Productivity Growth and Decomposition: A Case of the Yangtze River Economic Belt of China," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
  100. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
  101. Tong Zhao & Zhijie Song & Tianjiao Li, 2018. "Effect of innovation capacity, production capacity and vertical specialization on innovation performance in China's electronic manufacturing: Analysis from the supply and demand sides," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
  102. Tian, Peng & Lin, Boqiang, 2017. "Promoting green productivity growth for China's industrial exports: Evidence from a hybrid input-output model," Energy Policy, Elsevier, vol. 111(C), pages 394-402.
  103. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
  104. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
  105. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
  106. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
  107. Wang, Juan & Li, Ziming & Wang, Yanan, 2024. "How does China's energy-consumption trading policy affect the carbon abatement costs? An analysis based on spatial difference-in-differences method," Energy, Elsevier, vol. 294(C).
  108. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
  109. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
  110. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
  111. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
  112. Guang, Fengtao & He, Yongxiu & Wen, Le & Sharp, Basil, 2019. "Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis," Energy, Elsevier, vol. 180(C), pages 989-1000.
  113. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
  114. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
  115. ORALHAN Burcu & ALTAY TOPCU Betül & SÜMERLİ SARIGÜL Sevgi, 2016. "Determination Of Key Sectors In Turkish Economy By Using Input-Output Analysis," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 68(1), pages 178-192, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.