My bibliography
Save this item
Modeling and forecasting of cooling and electricity load demand
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vaghefi, A. & Farzan, Farbod & Jafari, Mohsen A., 2015. "Modeling industrial loads in non-residential buildings," Applied Energy, Elsevier, vol. 158(C), pages 378-389.
- Behl, Madhur & Smarra, Francesco & Mangharam, Rahul, 2016. "DR-Advisor: A data-driven demand response recommender system," Applied Energy, Elsevier, vol. 170(C), pages 30-46.
- Liu, Yang & Yu, Nanpeng & Wang, Wei & Guan, Xiaohong & Xu, Zhanbo & Dong, Bing & Liu, Ting, 2018. "Coordinating the operations of smart buildings in smart grids," Applied Energy, Elsevier, vol. 228(C), pages 2510-2525.
- Martin Robinius & Felix ter Stein & Adrien Schwane & Detlef Stolten, 2017. "A Top-Down Spatially Resolved Electrical Load Model," Energies, MDPI, vol. 10(3), pages 1-16, March.
- Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
- Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
- Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.
- Gilbert, Alexander Q. & Sovacool, Benjamin K., 2016. "Looking the wrong way: Bias, renewable electricity, and energy modelling in the United States," Energy, Elsevier, vol. 94(C), pages 533-541.
- Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
- Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
- Soler, Mònica Subirats & Sabaté, Carles Civit & Santiago, Víctor Benito & Jabbari, Faryar, 2016. "Optimizing performance of a bank of chillers with thermal energy storage," Applied Energy, Elsevier, vol. 172(C), pages 275-285.
- Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
- Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
- Wang, Chengshan & Jiao, Bingqi & Guo, Li & Tian, Zhe & Niu, Jide & Li, Siwei, 2016. "Robust scheduling of building energy system under uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 366-376.
- Pengwei Su & Xue Tian & Yan Wang & Shuai Deng & Jun Zhao & Qingsong An & Yongzhen Wang, 2017. "Recent Trends in Load Forecasting Technology for the Operation Optimization of Distributed Energy System," Energies, MDPI, vol. 10(9), pages 1-13, August.
- Li, Xiwang & Wen, Jin & Bai, Er-Wei, 2016. "Developing a whole building cooling energy forecasting model for on-line operation optimization using proactive system identification," Applied Energy, Elsevier, vol. 164(C), pages 69-88.
- Wang, Lin & Lv, Sheng-Xiang & Zeng, Yu-Rong, 2018. "Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China," Energy, Elsevier, vol. 155(C), pages 1013-1031.
- Zhang, Wenyu & Chen, Qian & Yan, Jianyong & Zhang, Shuai & Xu, Jiyuan, 2021. "A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting," Energy, Elsevier, vol. 236(C).
- Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
- Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland K. & Kim, Hyun Jae & Park, Kihyun & Edward Yu, T., 2016. "Effects of electricity-price policy on electricity demand and manufacturing output," Energy, Elsevier, vol. 102(C), pages 324-334.
- Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
- Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
- Farzan, Farbod & Jafari, Mohsen A. & Gong, Jie & Farzan, Farnaz & Stryker, Andrew, 2015. "A multi-scale adaptive model of residential energy demand," Applied Energy, Elsevier, vol. 150(C), pages 258-273.
- Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
- Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
- Ron-Hendrik Peesel & Florian Schlosser & Henning Meschede & Heiko Dunkelberg & Timothy G. Walmsley, 2019. "Optimization of Cooling Utility System with Continuous Self-Learning Performance Models," Energies, MDPI, vol. 12(10), pages 1-17, May.
- Fazlipour, Zahra & Mashhour, Elaheh & Joorabian, Mahmood, 2022. "A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism," Applied Energy, Elsevier, vol. 327(C).
- Xiaoming Zhou & Maosheng Sang & Minglei Bao & Yi Ding, 2022. "Tracing and Evaluating Life-Cycle Carbon Emissions of Urban Multi-Energy Systems," Energies, MDPI, vol. 15(8), pages 1-19, April.
- Tyralis, Hristos & Karakatsanis, Georgios & Tzouka, Katerina & Mamassis, Nikos, 2017. "Exploratory data analysis of the electrical energy demand in the time domain in Greece," Energy, Elsevier, vol. 134(C), pages 902-918.
- Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
- Hribar, Rok & Potočnik, Primož & Šilc, Jurij & Papa, Gregor, 2019. "A comparison of models for forecasting the residential natural gas demand of an urban area," Energy, Elsevier, vol. 167(C), pages 511-522.