IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v150y2015icp258-273.html
   My bibliography  Save this article

A multi-scale adaptive model of residential energy demand

Author

Listed:
  • Farzan, Farbod
  • Jafari, Mohsen A.
  • Gong, Jie
  • Farzan, Farnaz
  • Stryker, Andrew

Abstract

In this paper, we extend a previously developed bottom-up energy demand model such that the model can be used to determine changes in behavioral and energy usage patterns of a community when: (i) new load patterns from Plug-in Electrical Vehicles (PEV) or other devices are introduced; (ii) new technologies and smart devices are used within premises; and (iii) new Demand Side Management (DSM) strategies, such as price responsive demand are implemented. Unlike time series forecasting methods that solely rely on historical data, the model only uses a minimal amount of data at the atomic level for its basic constructs. These basic constructs can be integrated into a household unit or a community model using rules and connectors that are, in principle, flexible and can be altered according to the type of questions that need to be answered. Furthermore, the embedded dynamics of the model works on the basis of: (i) Markovian stochastic model for simulating human activities, (ii) Bayesian and logistic technology adoption models, and (iii) optimization, and rule-based models to respond to price signals without compromising users’ comfort. The proposed model is not intended to replace traditional forecasting models. Instead it provides an analytical framework that can be used at the design stage of new products and communities to evaluate design alternatives. The framework can also be used to answer questions such as why demand behaves the way it does by examining demands at different scales and by playing What-If games. These analyses are not possible with demand forecast models built on historical samples, simply because, these forecast models and their level of accuracy are limited by their training data sets and can hardly demonstrate variations that are not present in the historical data sets.

Suggested Citation

  • Farzan, Farbod & Jafari, Mohsen A. & Gong, Jie & Farzan, Farnaz & Stryker, Andrew, 2015. "A multi-scale adaptive model of residential energy demand," Applied Energy, Elsevier, vol. 150(C), pages 258-273.
  • Handle: RePEc:eee:appene:v:150:y:2015:i:c:p:258-273
    DOI: 10.1016/j.apenergy.2015.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191500447X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    2. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    3. Herriges, Joseph A. & Caves, Douglas W. & Train, K. & Windle, R. J., 1987. "A Bayesian Approach to Combining Conditional Demand and Engineering Models of Electricity Usage," Staff General Research Papers Archive 10794, Iowa State University, Department of Economics.
    4. Caves, Douglas W, et al, 1987. "A Bayesian Approach to Combining Conditional Demand and Engineering Models of Electricity Usage," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 438-448, August.
    5. Cappers, Peter & Goldman, Charles & Kathan, David, 2010. "Demand response in U.S. electricity markets: Empirical evidence," Energy, Elsevier, vol. 35(4), pages 1526-1535.
    6. Min, Jihoon & Azevedo, Inês L. & Michalek, Jeremy & de Bruin, Wändi Bruine, 2014. "Labeling energy cost on light bulbs lowers implicit discount rates," Ecological Economics, Elsevier, vol. 97(C), pages 42-50.
    7. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    8. Dennis J. Aigner & Cynts Sorooshian & Pamela Kerwin, 1984. "Conditional Demand Analysis for Estimating Residential End-Use Load Profiles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 81-98.
    9. Muratori, Matteo & Roberts, Matthew C. & Sioshansi, Ramteen & Marano, Vincenzo & Rizzoni, Giorgio, 2013. "A highly resolved modeling technique to simulate residential power demand," Applied Energy, Elsevier, vol. 107(C), pages 465-473.
    10. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    11. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    12. Daniel S. Hamermesh & Harley Frazis & Jay Stewart, 2005. "Data Watch: The American Time Use Survey," Journal of Economic Perspectives, American Economic Association, vol. 19(1), pages 221-232, Winter.
    13. Vaghefi, A. & Jafari, M.A. & Bisse, Emmanuel & Lu, Y. & Brouwer, J., 2014. "Modeling and forecasting of cooling and electricity load demand," Applied Energy, Elsevier, vol. 136(C), pages 186-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaghefi, A. & Farzan, Farbod & Jafari, Mohsen A., 2015. "Modeling industrial loads in non-residential buildings," Applied Energy, Elsevier, vol. 158(C), pages 378-389.
    2. Seyed Azad Nabavi & Alireza Aslani & Martha A. Zaidan & Majid Zandi & Sahar Mohammadi & Naser Hossein Motlagh, 2020. "Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors," Energies, MDPI, vol. 13(19), pages 1-22, October.
    3. Ge, Shaoyun & Li, Jifeng & He, Xingtang & Liu, Hong, 2021. "Joint energy market design for local integrated energy system service procurement considering demand flexibility," Applied Energy, Elsevier, vol. 297(C).
    4. Zhu, Jiawei & Lin, Yishuai & Lei, Weidong & Liu, Youquan & Tao, Mengling, 2019. "Optimal household appliances scheduling of multiple smart homes using an improved cooperative algorithm," Energy, Elsevier, vol. 171(C), pages 944-955.
    5. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    6. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    7. Verma, Anoop & Asadi, Ali & Yang, Kai & Tyagi, Satish, 2015. "A data-driven approach to identify households with plug-in electrical vehicles (PEVs)," Applied Energy, Elsevier, vol. 160(C), pages 71-79.
    8. Barkha Parkash & Tek Tjing Lie & Weihua Li & Shafiqur Rahman Tito, 2024. "End-to-End Top-Down Load Forecasting Model for Residential Consumers," Energies, MDPI, vol. 17(11), pages 1-20, May.
    9. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    10. Anees, Amir & Chen, Yi-Ping Phoebe, 2016. "True real time pricing and combined power scheduling of electric appliances in residential energy management system," Applied Energy, Elsevier, vol. 165(C), pages 592-600.
    11. Yu, Mengmeng & Hong, Seung Ho, 2016. "Supply–demand balancing for power management in smart grid: A Stackelberg game approach," Applied Energy, Elsevier, vol. 164(C), pages 702-710.
    12. Anees, Amir & Dillon, Tharam & Chen, Yi-Ping Phoebe, 2019. "A novel decision strategy for a bilateral energy contract," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Thakur, Jagruti & Chakraborty, Basab, 2016. "Demand side management in developing nations: A mitigating tool for energy imbalance and peak load management," Energy, Elsevier, vol. 114(C), pages 895-912.
    14. Tyralis, Hristos & Karakatsanis, Georgios & Tzouka, Katerina & Mamassis, Nikos, 2017. "Exploratory data analysis of the electrical energy demand in the time domain in Greece," Energy, Elsevier, vol. 134(C), pages 902-918.
    15. David Toquica & Kodjo Agbossou & Roland Malhamé & Nilson Henao & Sousso Kelouwani & Alben Cardenas, 2020. "Adaptive Machine Learning for Automated Modeling of Residential Prosumer Agents," Energies, MDPI, vol. 13(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Marcin Zygmunt & Dariusz Gawin, 2021. "Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock," Energies, MDPI, vol. 14(24), pages 1-15, December.
    3. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    4. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    6. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Working Papers e098, Tokyo Center for Economic Research.
    7. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    8. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    9. Hannah Goozee, 2017. "Energy, Poverty and Development: A Primer for the Sustainable Development Goals," Working Papers id:11933, eSocialSciences.
    10. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    11. Frondel, Manuel & Sommer, Stephan & Vance, Colin, 2019. "Heterogeneity in German Residential Electricity Consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 131(C), pages 370-379.
    12. Soo-Jin Lee & You-Jeong Kim & Hye-Sun Jin & Sung-Im Kim & Soo-Yeon Ha & Seung-Yeong Song, 2019. "Residential End-Use Energy Estimation Models in Korean Apartment Units through Multiple Regression Analysis," Energies, MDPI, vol. 12(12), pages 1-18, June.
    13. Huang, Yunyou & Zhan, Jianfeng & Luo, Chunjie & Wang, Lei & Wang, Nana & Zheng, Daoyi & Fan, Fanda & Ren, Rui, 2019. "An electricity consumption model for synthesizing scalable electricity load curves," Energy, Elsevier, vol. 169(C), pages 674-683.
    14. Bartels, Robert & Fiebig, Denzil G., 1995. "Optimal design in end-use metering experiments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 305-309.
    15. Shiraki, Hiroto & Nakamura, Shogo & Ashina, Shuichi & Honjo, Keita, 2016. "Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods," Energy, Elsevier, vol. 114(C), pages 478-491.
    16. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    17. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    18. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    19. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    20. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:150:y:2015:i:c:p:258-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.