IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v94y2016icp533-541.html
   My bibliography  Save this article

Looking the wrong way: Bias, renewable electricity, and energy modelling in the United States

Author

Listed:
  • Gilbert, Alexander Q.
  • Sovacool, Benjamin K.

Abstract

The United States Energy Information Administration releases an AEO (Annual Energy Outlook) projecting future supply, demand, and resources for energy and electricity in the U.S. It is widely relied upon for policymaking. This study assesses twelve years of these projections of generation and capacity for six classes of renewable technologies. It finds consistent under projections for most renewable energy types in the mid- and long-term, due to inaccuracies, limitations, and inconsistencies in the underlying model. It identifies and evaluates five hypotheses that may explain such inaccuracy: inaccurate modelling of state renewable energy mandates, expiration of renewable tax credits, flaws in modelling structure, a biomass co-firing assumption, and capital cost projections. Unless AEO's projections of renewable energy are greatly improved, the reliability of its sector-wide electricity projections is inherently low. Key modifications suggested by this study include: fully valuing financial and non-financial benefits of renewables, improving cost innovation expectations for renewable energy, and, perhaps most importantly, properly modelling state renewable energy mandates.

Suggested Citation

  • Gilbert, Alexander Q. & Sovacool, Benjamin K., 2016. "Looking the wrong way: Bias, renewable electricity, and energy modelling in the United States," Energy, Elsevier, vol. 94(C), pages 533-541.
  • Handle: RePEc:eee:energy:v:94:y:2016:i:c:p:533-541
    DOI: 10.1016/j.energy.2015.10.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215015133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agbor, Ezinwa & Zhang, Xiaolei & Kumar, Amit, 2014. "A review of biomass co-firing in North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 930-943.
    2. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    3. Hitaj, Claudia, 2013. "Wind power development in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 394-410.
    4. Yin, Haitao & Powers, Nicholas, 2010. "Do state renewable portfolio standards promote in-state renewable generation[glottal stop]," Energy Policy, Elsevier, vol. 38(2), pages 1140-1149, February.
    5. Thomas P. Lyon & Haitao Yin, 2010. "Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 133-158.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    7. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    8. Sovacool, Benjamin K. & Sovacool, Kelly E., 2009. "Identifying future electricity-water tradeoffs in the United States," Energy Policy, Elsevier, vol. 37(7), pages 2763-2773, July.
    9. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    10. O'Neill, Brian C. & Desai, Mausami, 2005. "Accuracy of past projections of US energy consumption," Energy Policy, Elsevier, vol. 33(8), pages 979-993, May.
    11. Vaghefi, A. & Jafari, M.A. & Bisse, Emmanuel & Lu, Y. & Brouwer, J., 2014. "Modeling and forecasting of cooling and electricity load demand," Applied Energy, Elsevier, vol. 136(C), pages 186-196.
    12. Fischer, Carolyn & Herrnstadt, Evan & Morgenstern, Richard, 2009. "Understanding errors in EIA projections of energy demand," Resource and Energy Economics, Elsevier, vol. 31(3), pages 198-209, August.
    13. Shrimali, Gireesh & Lynes, Melissa & Indvik, Joe, 2015. "Wind energy deployment in the U.S.: An empirical analysis of the role of federal and state policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 796-806.
    14. DeCarolis, Joseph F. & Hunter, Kevin & Sreepathi, Sarat, 2012. "The case for repeatable analysis with energy economy optimization models," Energy Economics, Elsevier, vol. 34(6), pages 1845-1853.
    15. Mack, Joel H. & Gianvecchio, Natasha & Campopiano, Marc T. & M. Logan, Suzanne, 2011. "All RECs Are Local: How In-State Generation Requirements Adversely Affect Development of a Robust REC Market," The Electricity Journal, Elsevier, vol. 24(4), pages 8-25, May.
    16. Berry, David, 2005. "Renewable energy as a natural gas price hedge: the case of wind," Energy Policy, Elsevier, vol. 33(6), pages 799-807, April.
    17. Wu, Jung-Hua & Huang, Yun-Hsun, 2014. "Electricity portfolio planning model incorporating renewable energy characteristics," Applied Energy, Elsevier, vol. 119(C), pages 278-287.
    18. Barradale, Merrill Jones, 2010. "Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit," Energy Policy, Elsevier, vol. 38(12), pages 7698-7709, December.
    19. Lady, George M., 2010. "Evaluating long term forecasts," Energy Economics, Elsevier, vol. 32(2), pages 450-457, March.
    20. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2021. "Long-term uncertainties in generation expansion planning: Implications for electricity market modelling and policy," Energy, Elsevier, vol. 227(C).
    2. Sandoval, Noah & Reyna, Janet L. & Landis, Amy E., 2023. "Internal consistency and diversity scenario development: A comparative framework to evaluate energy model scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    3. Alexander R. Barron & Allen A. Fawcett & Marc A. C. Hafstead & James R. Mcfarland & Adele C. Morris, 2018. "Policy Insights From The Emf 32 Study On U.S. Carbon Tax Scenarios," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-47, February.
    4. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2018. "Carbon pathways in the global gas market: An attributional lifecycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia," Energy Policy, Elsevier, vol. 120(C), pages 635-643.
    5. Oei, Pao-Yu & Mendelevitch, Roman, 2019. "Prospects for steam coal exporters in the era of climate policies: a case study of Colombia," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(1), pages 73-91.
    6. Sovacool, Benjamin K., 2017. "Contestation, contingency, and justice in the Nordic low-carbon energy transition," Energy Policy, Elsevier, vol. 102(C), pages 569-582.
    7. al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
    8. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    9. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    10. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    11. Harris, Tyler M. & Devkota, Jay P. & Khanna, Vikas & Eranki, Pragnya L. & Landis, Amy E., 2018. "Logistic growth curve modeling of US energy production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 46-57.
    12. Lu, Yuehong & Zhang, Xiao-Ping & Li, Jianing & Huang, Zhijia & Wang, Changlong & Luo, Liang, 2019. "Design of a reward-penalty cost for the promotion of net-zero energy buildings," Energy, Elsevier, vol. 180(C), pages 36-49.
    13. Nicholas Gurieff & Behdad Moghtaderi & Rahman Daiyan & Rose Amal, 2021. "Gas Transition: Renewable Hydrogen’s Future in Eastern Australia’s Energy Networks," Energies, MDPI, vol. 14(13), pages 1-20, July.
    14. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, vol. 10(7), pages 1-17, June.
    15. Celine Bout & Jay Sterling Gregg & James Haselip & Geraint Ellis, 2021. "How Is Social Acceptance Reflected in National Renewable Energy Plans? Evidence from Three Wind-Rich Countries," Energies, MDPI, vol. 14(13), pages 1-19, July.
    16. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Jie Ma & Amos Oppong & Kingsley Nketia Acheampong & Lucille Aba Abruquah, 2018. "Forecasting Renewable Energy Consumption under Zero Assumptions," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    18. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
    19. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    20. Yang, Yong-cong & Nie, Pu-yan, 2022. "Subsidy for clean innovation considered technological spillover," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    21. Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.
    22. Berntsen, Philip B. & Trutnevyte, Evelina, 2017. "Ensuring diversity of national energy scenarios: Bottom-up energy system model with Modeling to Generate Alternatives," Energy, Elsevier, vol. 126(C), pages 886-898.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    2. Barry D. Solomon & Shan Zhou, 2021. "Renewable Portfolio Standards: Do Voluntary Goals vs. Mandatory Standards Make a Difference?," Review of Policy Research, Policy Studies Organization, vol. 38(2), pages 146-163, March.
    3. Lynes, Melissa & Featherstone, Allen, 2015. "Economic Efficiency of Utility Plants Under Renewable Energy Policy," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205674, Agricultural and Applied Economics Association.
    4. Parrish Bergquist & Christopher Warshaw, 2023. "How climate policy commitments influence energy systems and the economies of US states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
    6. Crago, Christine & Chernyakhovskiy, Ilya, 2014. "Solar PV Technology Adoption in the United States: An Empirical Investigation of State Policy Effectiveness," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169939, Agricultural and Applied Economics Association.
    7. Thomas, Pinky & Khurana, Ritika & Etienne, Xiaoli L. & Collins, Alan R., 2023. "The Impacts of State Policies on Renewable Energy Generation Capacity: A County-Level Spatial Panel Analysis," 2023 Annual Meeting, July 23-25, Washington D.C. 335717, Agricultural and Applied Economics Association.
    8. Masini, Andrea & Menichetti, Emanuela, 2013. "Investment decisions in the renewable energy sector: An analysis of non-financial drivers," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 510-524.
    9. Upton, Gregory B. & Snyder, Brian F., 2017. "Funding renewable energy: An analysis of renewable portfolio standards," Energy Economics, Elsevier, vol. 66(C), pages 205-216.
    10. Maguire, Karen & Munasib, Abdul, 2015. "The Disparate Influence of State Renewable Portfolio Standards (RPS) on U.S. Renewable Electricity Generation Capacity," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 202851, Agricultural and Applied Economics Association.
    11. Daniel J Pastor, 2020. "The effects of renewables portfolio standards on renewable energy generation," Economics Bulletin, AccessEcon, vol. 40(3), pages 2121-2133.
    12. Karen Maguire & Abdul Munasib, 2016. "The Disparate Influence of State Renewable Portfolio Standards on Renewable Electricity Generation Capacity," Land Economics, University of Wisconsin Press, vol. 92(3), pages 468-490.
    13. Bistline, John E.T. & Brown, Maxwell & Siddiqui, Sauleh A. & Vaillancourt, Kathleen, 2020. "Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system," Energy Policy, Elsevier, vol. 145(C).
    14. Kim, Serena Y., 2020. "Institutional arrangements and airport solar PV," Energy Policy, Elsevier, vol. 143(C).
    15. Sánchez-Braza, Antonio & Pablo-Romero, María del P., 2014. "Evaluation of property tax bonus to promote solar thermal systems in Andalusia (Spain)," Energy Policy, Elsevier, vol. 67(C), pages 832-843.
    16. Don Fullerton & Chi L. Ta, 2022. "What Determines Effectiveness of Renewable Energy Standards? General Equilibrium Analytical Model and Empirical Analysis," CESifo Working Paper Series 9565, CESifo.
    17. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    18. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    19. Rountree, Valerie, 2019. "Nevada's experience with the Renewable Portfolio Standard," Energy Policy, Elsevier, vol. 129(C), pages 279-291.
    20. Prasad, Monica & Munch, Steven, 2012. "State-level renewable electricity policies and reductions in carbon emissions," Energy Policy, Elsevier, vol. 45(C), pages 237-242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:94:y:2016:i:c:p:533-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.