My bibliography
Save this item
Lasso-Type Gmm Estimator
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Savin Ivan, 2013.
"A Comparative Study of the Lasso-type and Heuristic Model Selection Methods,"
Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(4), pages 526-549, August.
- Ivan Savin, 2010. "A comparative study of the Lasso-type and heuristic model selection methods," Working Papers 042, COMISEF.
- Zhu, Ying, 2015. "Sparse Linear Models and l1−Regularized 2SLS with High-Dimensional Endogenous Regressors and Instruments," MPRA Paper 81217, University Library of Munich, Germany.
- Lewbel, Arthur & Choi, Jin Young & Zhou, Zhuzhu, 2023.
"Over-identified Doubly Robust identification and estimation,"
Journal of Econometrics, Elsevier, vol. 235(1), pages 25-42.
- Arthur Lewbel & Jin-Young Choi & Zhuzhu Zhou, 2019. "Over-Identified Doubly Robust Identification and Estimation," Boston College Working Papers in Economics 1003, Boston College Department of Economics, revised 15 Jan 2022.
- Hao Hao & Bai Huang & Tae-hwy Lee, 2024.
"Model averaging estimation of panel data models with many instruments and boosting,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 51(1), pages 53-69, January.
- Hao Hao & Bai Huang & Tae-Hwy Lee, 2022. "Model Averaging Estimation of Panel Data Models with Many Instruments and Boosting," Working Papers 202212, University of California at Riverside, Department of Economics.
- Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023.
"High dimensional semiparametric moment restriction models,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2017. "High dimensional semiparametric moment restriction models," Monash Econometrics and Business Statistics Working Papers 17/17, Monash University, Department of Econometrics and Business Statistics.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," CeMMAP working papers CWP04/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," CeMMAP working papers CWP69/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," Monash Econometrics and Business Statistics Working Papers 23/18, Monash University, Department of Econometrics and Business Statistics.
- Dong, C. & Gao, J. & Linton, O., 2018. "High Dimensional Semiparametric Moment Restriction Models," Cambridge Working Papers in Economics 1881, Faculty of Economics, University of Cambridge.
- Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Áureo de Paula, 2015.
"Econometrics of network models,"
CeMMAP working papers
52/15, Institute for Fiscal Studies.
- Áureo de Paula, 2016. "Econometrics of network models," CeMMAP working papers 06/16, Institute for Fiscal Studies.
- Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Áureo de Paula, 2016. "Econometrics of network models," CeMMAP working papers CWP06/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
- Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
- Caner, Mehmet & Yıldız, Neşe, 2012. "CUE with many weak instruments and nearly singular design," Journal of Econometrics, Elsevier, vol. 170(2), pages 422-441.
- Federico A. Bugni & Mehmet Caner & Anders Bredahl Kock & Soumendra Lahiri, 2016. "Inference in partially identified models with many moment inequalities using Lasso," CREATES Research Papers 2016-12, Department of Economics and Business Economics, Aarhus University.
- Mehmet Caner & Xu Han & Yoonseok Lee, 2018.
"Adaptive Elastic Net GMM Estimation With Many Invalid Moment Conditions: Simultaneous Model and Moment Selection,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 24-46, January.
- Yoonseok Lee & Mehmet Caner & Xu Han, 2015. "Adaptive Elastic Net GMM Estimation with Many Invalid Moment Conditions: Simultaneous Model and Moment Selection," Center for Policy Research Working Papers 177, Center for Policy Research, Maxwell School, Syracuse University.
- Ivan Korolev, 2018. "LM-BIC Model Selection in Semiparametric Models," Papers 1811.10676, arXiv.org.
- Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Ning Xu & Jian Hong & Timothy C. G. Fisher, 2016.
"Finite-sample and asymptotic analysis of generalization ability with an application to penalized regression,"
Papers
1609.03344, arXiv.org, revised Sep 2016.
- Xu, Ning & Hong, Jian & Fisher, Timothy, 2016. "Finite-sample and asymptotic analysis of generalization ability with an application to penalized regression," MPRA Paper 73622, University Library of Munich, Germany.
- Zhu, Ying, 2013. "Sparse Linear Models and Two-Stage Estimation in High-Dimensional Settings with Possibly Many Endogenous Regressors," MPRA Paper 49846, University Library of Munich, Germany.
- Ning Xu & Jian Hong & Timothy C. G. Fisher, 2016.
"Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso,"
Papers
1606.00142, arXiv.org.
- Xu, Ning & Hong, Jian & Fisher, Timothy, 2016. "Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso," MPRA Paper 71670, University Library of Munich, Germany.
- Inoue, Atsushi & Rossi, Barbara, 2011.
"Testing for weak identification in possibly nonlinear models,"
Journal of Econometrics, Elsevier, vol. 161(2), pages 246-261, April.
- Barbara Rossi & Atsushi Inoue, 2010. "Testing for Weak Identification in Possibly Nonlinear Models," Working Papers 10-92, Duke University, Department of Economics.
- Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
- Ando, Tomohiro & Sueishi, Naoya, 2019. "Regularization parameter selection for penalized empirical likelihood estimator," Economics Letters, Elsevier, vol. 178(C), pages 1-4.
- Lu, Xun & Su, Liangjun, 2016.
"Shrinkage estimation of dynamic panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
- Xun Lu & Su Liangjun, 2015. "Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects," Working Papers 02-2015, Singapore Management University, School of Economics.
- Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.
- Minsu Chang & Francis J. DiTraglia, 2020. "A Generalized Focused Information Criterion for GMM," Papers 2011.07085, arXiv.org.
- Achim Ahrens & Arnab Bhattacharjee, 2015. "Two-Step Lasso Estimation of the Spatial Weights Matrix," Econometrics, MDPI, vol. 3(1), pages 1-28, March.
- DiTraglia, Francis J., 2016.
"Using invalid instruments on purpose: Focused moment selection and averaging for GMM,"
Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
- Francis J. DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM," PIER Working Paper Archive 14-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 04 Aug 2014.
- Yeşim Güney & Yetkin Tuaç & Şenay Özdemir & Olcay Arslan, 2021. "Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution," Computational Statistics, Springer, vol. 36(2), pages 805-827, June.
- Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022.
"On LASSO for predictive regression,"
Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
- Ji Hyung Lee & Zhentao Shi & Zhan Gao, 2018. "On LASSO for Predictive Regression," Papers 1810.03140, arXiv.org, revised Feb 2021.
- Gerda Claeskens, 2012. "Focused estimation and model averaging with penalization methods: an overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 272-287, August.
- Eric Gautier & Alexandre Tsybakov, 2011.
"High-Dimensional Instrumental Variables Regression and Confidence Sets,"
Working Papers
2011-13, Center for Research in Economics and Statistics.
- Eric Gautier & Christiern Rose, 2021. "High-dimensional instrumental variables regression and confidence sets," Working Papers hal-00591732, HAL.
- Gautier, Eric & Rose, Christiern & Tsybakov, Alexandre, 2018. "High-dimensional instrumental variables regression and confidence sets," TSE Working Papers 18-930, Toulouse School of Economics (TSE), revised Nov 2019.
- Fan, Jianqing & Liao, Yuan, 2012. "Endogeneity in ultrahigh dimension," MPRA Paper 38698, University Library of Munich, Germany.
- Stefano Maria IACUS & Alessandro DE GREGORIO, 2010.
"Adaptive LASSO-type estimation for ergodic diffusion processes,"
Departmental Working Papers
2010-13, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Alessandro De Gregorio & Stefano Iacus, 2010. "Adaptive LASSO-type estimation for ergodic diffusion processes," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1100, Universitá degli Studi di Milano.
- Ning Xu & Jian Hong & Timothy C. G. Fisher, 2016. "Generalization error minimization: a new approach to model evaluation and selection with an application to penalized regression," Papers 1610.05448, arXiv.org.
- Zhu, Ying, 2018. "Sparse linear models and l1-regularized 2SLS with high-dimensional endogenous regressors and instruments," Journal of Econometrics, Elsevier, vol. 202(2), pages 196-213.
- Bai Huang & Tae-Hwy Lee & Aman Ullah, 2017.
"A combined estimator of regression models with measurement errors,"
Indian Economic Review, Springer, vol. 52(1), pages 73-91, December.
- Tae-Hwy Lee & Bai Huang & Aman Ullah, 2017. "A Combined Estimator of Regression Models with Measurement Errors," Working Papers 201902, University of California at Riverside, Department of Economics.
- Nandana Sengupta & Fallaw Sowell, 2019. "The Ridge Path Estimator for Linear Instrumental Variables," Papers 1908.09237, arXiv.org.
- Martins, Luis F. & Gabriel, Vasco J., 2014. "Linear instrumental variables model averaging estimation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 709-724.
- Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.