IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v202y2018i2p196-213.html
   My bibliography  Save this article

Sparse linear models and l1-regularized 2SLS with high-dimensional endogenous regressors and instruments

Author

Listed:
  • Zhu, Ying

Abstract

We explore the validity of the 2-stage least squares estimator with l1-regularization in both stages, for linear triangular models where the numbers of endogenous regressors in the main equation and instruments in the first-stage equations can exceed the sample size, and the regression coefficients are sufficiently sparse. For this l1-regularized 2-stage least squares estimator, we first establish finite-sample performance bounds and then provide a simple practical method (with asymptotic guarantees) for choosing the regularization parameter. We also sketch an inference strategy built upon this practical method.

Suggested Citation

  • Zhu, Ying, 2018. "Sparse linear models and l1-regularized 2SLS with high-dimensional endogenous regressors and instruments," Journal of Econometrics, Elsevier, vol. 202(2), pages 196-213.
  • Handle: RePEc:eee:econom:v:202:y:2018:i:2:p:196-213
    DOI: 10.1016/j.jeconom.2017.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617302105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
    2. Alexandre Belloni & Victor Chernozhukov, 2011. "High Dimensional Sparse Econometric Models: An Introduction," Papers 1106.5242, arXiv.org, revised Sep 2011.
    3. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    4. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference for high-dimensional sparse econometric models," CeMMAP working papers CWP41/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Garen, John, 1984. "The Returns to Schooling: A Selectivity Bias Approach with a Continuous Choice Variable," Econometrica, Econometric Society, vol. 52(5), pages 1199-1218, September.
    6. Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(1), pages 270-290, February.
    7. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    8. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sida Peng, 2019. "Heterogeneous Endogenous Effects in Networks," Papers 1908.00663, arXiv.org.
    2. Gold, David & Lederer, Johannes & Tao, Jing, 2020. "Inference for high-dimensional instrumental variables regression," Journal of Econometrics, Elsevier, vol. 217(1), pages 79-111.
    3. Hao Zeng & Wei Zhong & Xingbai Xu, 2024. "Transfer Learning for Spatial Autoregressive Models with Application to U.S. Presidential Election Prediction," Papers 2405.15600, arXiv.org, revised Sep 2024.
    4. Nandana Sengupta & Fallaw Sowell, 2020. "On the Asymptotic Distribution of Ridge Regression Estimators Using Training and Test Samples," Econometrics, MDPI, vol. 8(4), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Ying, 2013. "Sparse Linear Models and Two-Stage Estimation in High-Dimensional Settings with Possibly Many Endogenous Regressors," MPRA Paper 49846, University Library of Munich, Germany.
    2. Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    6. Federico A. Bugni & Mehmet Caner & Anders Bredahl Kock & Soumendra Lahiri, 2016. "Inference in partially identified models with many moment inequalities using Lasso," CREATES Research Papers 2016-12, Department of Economics and Business Economics, Aarhus University.
    7. Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
    8. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
    9. Ning Xu & Jian Hong & Timothy C. G. Fisher, 2016. "Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso," Papers 1606.00142, arXiv.org.
    10. Damian Kozbur, 2013. "Inference in additively separable models with a high-dimensional set of conditioning variables," ECON - Working Papers 284, Department of Economics - University of Zurich, revised Apr 2018.
    11. Zhu, Ying, 2015. "Sparse Linear Models and l1−Regularized 2SLS with High-Dimensional Endogenous Regressors and Instruments," MPRA Paper 81217, University Library of Munich, Germany.
    12. Achim Ahrens & Arnab Bhattacharjee, 2015. "Two-Step Lasso Estimation of the Spatial Weights Matrix," Econometrics, MDPI, vol. 3(1), pages 1-28, March.
    13. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    14. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Oct 2019.
    15. Gold, David & Lederer, Johannes & Tao, Jing, 2020. "Inference for high-dimensional instrumental variables regression," Journal of Econometrics, Elsevier, vol. 217(1), pages 79-111.
    16. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    17. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    18. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    19. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    20. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.

    More about this item

    Keywords

    High-dimensional statistics; Lasso; Sparse linear models; Endogeneity; Two-stage least squares;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:202:y:2018:i:2:p:196-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.