IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.09237.html
   My bibliography  Save this paper

The Ridge Path Estimator for Linear Instrumental Variables

Author

Listed:
  • Nandana Sengupta
  • Fallaw Sowell

Abstract

This paper presents the asymptotic behavior of a linear instrumental variables (IV) estimator that uses a ridge regression penalty. The regularization tuning parameter is selected empirically by splitting the observed data into training and test samples. Conditional on the tuning parameter, the training sample creates a path from the IV estimator to a prior. The optimal tuning parameter is the value along this path that minimizes the IV objective function for the test sample. The empirically selected regularization tuning parameter becomes an estimated parameter that jointly converges with the parameters of interest. The asymptotic distribution of the tuning parameter is a nonstandard mixture distribution. Monte Carlo simulations show the asymptotic distribution captures the characteristics of the sampling distributions and when this ridge estimator performs better than two-stage least squares.

Suggested Citation

  • Nandana Sengupta & Fallaw Sowell, 2019. "The Ridge Path Estimator for Linear Instrumental Variables," Papers 1908.09237, arXiv.org.
  • Handle: RePEc:arx:papers:1908.09237
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.09237
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Bickel & Bo Li & Alexandre Tsybakov & Sara Geer & Bin Yu & Teófilo Valdés & Carlos Rivero & Jianqing Fan & Aad Vaart, 2006. "Regularization in statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 271-344, September.
    2. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    3. Sanderson, Eleanor & Windmeijer, Frank, 2016. "A weak instrument F-test in linear IV models with multiple endogenous variables," Journal of Econometrics, Elsevier, vol. 190(2), pages 212-221.
    4. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    5. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    6. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    7. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
    8. Bertille Antoine & Eric Renault, 2009. "Efficient GMM with nearly-weak instruments," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 135-171, January.
    9. Mehmet Caner & Esfandiar Maasoumi & Juan Andrés Riquelme, 2016. "Moment and IV Selection Approaches: A Comparative Simulation Study," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1562-1581, December.
    10. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    11. Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(1), pages 270-290, February.
    12. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    13. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    14. Liao, Zhipeng, 2013. "Adaptive Gmm Shrinkage Estimation With Consistent Moment Selection," Econometric Theory, Cambridge University Press, vol. 29(5), pages 857-904, October.
    15. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    16. Andrews, Donald W K, 2002. "Generalized Method of Moments Estimation When a Parameter Is on a Boundary," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 530-544, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nandana Sengupta & Fallaw Sowell, 2020. "On the Asymptotic Distribution of Ridge Regression Estimators Using Training and Test Samples," Econometrics, MDPI, vol. 8(4), pages 1-25, October.
    2. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    3. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    4. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    5. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Dakyung Seong, 2022. "Binary response model with many weak instruments," Papers 2201.04811, arXiv.org, revised Jun 2024.
    7. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    8. Pierre Chausse, 2017. "Regularized Empirical Likelihood as a Solution to the No Moment," Working Papers 1708, University of Waterloo, Department of Economics, revised Nov 2017.
    9. Carrasco, Marine & Kotchoni, Rachidi, 2017. "Efficient Estimation Using The Characteristic Function," Econometric Theory, Cambridge University Press, vol. 33(2), pages 479-526, April.
    10. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    11. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    12. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    13. Guy Tchuente, 2019. "Weak Identification and Estimation of Social Interaction Models," Papers 1902.06143, arXiv.org.
    14. Guy Tchuente, 2016. "Estimation of social interaction models using regularization," Studies in Economics 1607, School of Economics, University of Kent.
    15. Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
    16. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    17. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    18. Guy Tchuente, 2021. "A Note on the Topology of the First Stage of 2SLS with Many Instruments," Papers 2106.15003, arXiv.org.
    19. N'Golo Kone, 2021. "Efficient mean-variance portfolio selection by double regularization," Working Paper 1453, Economics Department, Queen's University.
    20. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    21. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.09237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.