IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i2d10.1007_s00180-020-01036-5.html
   My bibliography  Save this article

Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution

Author

Listed:
  • Yeşim Güney

    (Ankara University)

  • Yetkin Tuaç

    (Ankara University)

  • Şenay Özdemir

    (Afyon Kocatepe University)

  • Olcay Arslan

    (Ankara University)

Abstract

The assumption of equal variances is not always appropriate and different approaches for modelling variance heterogeneity have been widely studied in the literature. One of these approaches is joint location and scale model defined with the idea that both the location and the scale depend on explanatory variables through parametric linear models. Because the joint location and scale model includes two models, it does not deal well with a large number of irrelevant variables. Therefore, determining the variables that are important for the location and the scale is as important as estimating the parameters of these models. From this point of view, a combine robust estimation and variable selection method is proposed to simultaneously estimate the parameters and select the important variables. This is done using the least favorable distribution and least absolute shrinkage and selection operator method. Under appropriate conditions, we study the consistency, asymptotic distribution and the sparsity property of the proposed robust estimator. Simulation studies and a real data example are provided to demonstrate the advantages of the proposed method over existing methods in literature.

Suggested Citation

  • Yeşim Güney & Yetkin Tuaç & Şenay Özdemir & Olcay Arslan, 2021. "Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution," Computational Statistics, Springer, vol. 36(2), pages 805-827, June.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01036-5
    DOI: 10.1007/s00180-020-01036-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-01036-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-01036-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi Zheng & Colin Gallagher & K. B. Kulasekera, 2017. "Robust adaptive Lasso for variable selection," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(9), pages 4642-4659, May.
    2. Murray Aitkin, 1987. "Modelling Variance Heterogeneity in Normal Regression Using GLIM," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 332-339, November.
    3. Lan Wang & Runze Li, 2009. "Weighted Wilcoxon-Type Smoothly Clipped Absolute Deviation Method," Biometrics, The International Biometric Society, vol. 65(2), pages 564-571, June.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    6. Liucang Wu & Huiqiong Li, 2012. "Variable selection for joint mean and dispersion models of the inverse Gaussian distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 795-808, August.
    7. Liu-Cang Wu & Zhong-Zhan Zhang & Deng-Ke Xu, 2012. "Variable selection in joint mean and variance models of Box--Cox transformation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2543-2555, August.
    8. Arslan, Olcay, 2012. "Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1952-1965.
    9. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    10. Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(1), pages 270-290, February.
    11. Xueqin Wang & Yunlu Jiang & Mian Huang & Heping Zhang, 2013. "Robust Variable Selection With Exponential Squared Loss," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 632-643, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gijbels, I. & Vrinssen, I., 2015. "Robust nonnegative garrote variable selection in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 1-22.
    2. Liya Fu & Zhuoran Yang & Fengjing Cai & You-Gan Wang, 2021. "Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis," Computational Statistics, Springer, vol. 36(2), pages 781-804, June.
    3. Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
    4. Liu-Cang Wu & Zhong-Zhan Zhang & Deng-Ke Xu, 2012. "Variable selection in joint mean and variance models of Box--Cox transformation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2543-2555, August.
    5. Xu, Dengke & Zhang, Zhongzhan, 2013. "A semiparametric Bayesian approach to joint mean and variance models," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1624-1631.
    6. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
    7. Liucang Wu & Huiqiong Li, 2012. "Variable selection for joint mean and dispersion models of the inverse Gaussian distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 795-808, August.
    8. Stern, David I. & Gerlagh, Reyer & Burke, Paul J., 2017. "Modeling the emissions–income relationship using long-run growth rates," Environment and Development Economics, Cambridge University Press, vol. 22(6), pages 699-724, December.
    9. Ali, Abdul & Kelley, Donna J. & Levie, Jonathan, 2020. "Market-driven entrepreneurship and institutions," Journal of Business Research, Elsevier, vol. 113(C), pages 117-128.
    10. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    11. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    12. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    13. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    14. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    15. LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    16. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Tsung-Shan Tsou, 2005. "Inferences of variance function - a parametric robust way," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 785-796.
    18. Wu, Jinran & Wang, You-Gan & Tian, Yu-Chu & Burrage, Kevin & Cao, Taoyun, 2021. "Support vector regression with asymmetric loss for optimal electric load forecasting," Energy, Elsevier, vol. 223(C).
    19. Wentao Wang & Jiaxuan Liang & Rong Liu & Yunquan Song & Min Zhang, 2022. "A Robust Variable Selection Method for Sparse Online Regression via the Elastic Net Penalty," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    20. Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:2:d:10.1007_s00180-020-01036-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.