IDEAS home Printed from https://ideas.repec.org/r/cor/louvrp/1166.html
   My bibliography  Save this item

New variants of bundle methods

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.
  2. Blanchot, Xavier & Clautiaux, François & Detienne, Boris & Froger, Aurélien & Ruiz, Manuel, 2023. "The Benders by batch algorithm: Design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 202-216.
  3. Chunming Tang & Bo He & Zhenzhen Wang, 2020. "Modified Accelerated Bundle-Level Methods and Their Application in Two-Stage Stochastic Programming," Mathematics, MDPI, vol. 8(2), pages 1-26, February.
  4. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
  5. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
  6. Göke, Leonard & Schmidt, Felix & Kendziorski, Mario, 2024. "Stabilized Benders decomposition for energy planning under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 316(1), pages 183-199.
  7. Matteo Fischetti & Ivana Ljubić & Markus Sinnl, 2017. "Redesigning Benders Decomposition for Large-Scale Facility Location," Management Science, INFORMS, vol. 63(7), pages 2146-2162, July.
  8. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
  9. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
  10. H. Xu, 2001. "Level Function Method for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 407-437, February.
  11. A. Pessoa & R. Sadykov & E. Uchoa & F. Vanderbeck, 2018. "Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 339-360, May.
  12. Antonio Frangioni, 2005. "About Lagrangian Methods in Integer Optimization," Annals of Operations Research, Springer, vol. 139(1), pages 163-193, October.
  13. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
  14. Vincent Guigues & Renato D. C. Monteiro, 2021. "Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 513-559, May.
  15. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
  16. Arkadi Nemirovski & Shmuel Onn & Uriel G. Rothblum, 2010. "Accuracy Certificates for Computational Problems with Convex Structure," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 52-78, February.
  17. Mínguez, R. & van Ackooij, W. & García-Bertrand, R., 2021. "Constraint generation for risk averse two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 288(1), pages 194-206.
  18. Benjamin Grimmer, 2023. "General Hölder Smooth Convergence Rates Follow from Specialized Rates Assuming Growth Bounds," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 51-70, April.
  19. Michel Denault & Jean-Louis Goffin, 2005. "The Analytic-Center Cutting-Plane Method for Variational Inequalities: A Quadratic-Cut Approach," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 192-206, May.
  20. Rui Chen & James Luedtke, 2022. "On Generating Lagrangian Cuts for Two-Stage Stochastic Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2332-2349, July.
  21. Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
  22. Butyn, Emerson & Karas, Elizabeth W. & de Oliveira, Welington, 2022. "A derivative-free trust-region algorithm with copula-based models for probability maximization problems," European Journal of Operational Research, Elsevier, vol. 298(1), pages 59-75.
  23. Mikhail A. Bragin & Peter B. Luh & Joseph H. Yan & Nanpeng Yu & Gary A. Stern, 2015. "Convergence of the Surrogate Lagrangian Relaxation Method," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 173-201, January.
  24. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
  25. Yunmei Chen & Xiaojing Ye & Wei Zhang, 2020. "Acceleration techniques for level bundle methods in weakly smooth convex constrained optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 411-432, November.
  26. Kamiar Asgari & Michael J. Neely, 2024. "Nonsmooth projection-free optimization with functional constraints," Computational Optimization and Applications, Springer, vol. 89(3), pages 927-975, December.
  27. Tang, Chunming & Liu, Shuai & Jian, Jinbao & Ou, Xiaomei, 2020. "A multi-step doubly stabilized bundle method for nonsmooth convex optimization," Applied Mathematics and Computation, Elsevier, vol. 376(C).
  28. Wim Ackooij & Welington Oliveira, 2019. "Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 49-80, July.
  29. Nikhil Devanathan & Stephen Boyd, 2024. "Polyak Minorant Method for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2263-2282, December.
  30. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.