IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i3d10.1007_s10957-024-02412-7.html
   My bibliography  Save this article

Polyak Minorant Method for Convex Optimization

Author

Listed:
  • Nikhil Devanathan

    (Stanford University)

  • Stephen Boyd

    (Stanford University)

Abstract

In 1963 Boris Polyak suggested a particular step size for gradient descent methods, now known as the Polyak step size, that he later adapted to subgradient methods. The Polyak step size requires knowledge of the optimal value of the minimization problem, which is a strong assumption but one that holds for several important problems. In this paper we extend Polyak’s method to handle constraints and, as a generalization of subgradients, general minorants, which are convex functions that tightly lower bound the objective and constraint functions. We refer to this algorithm as the Polyak Minorant Method (PMM). It is closely related to cutting-plane and bundle methods.

Suggested Citation

  • Nikhil Devanathan & Stephen Boyd, 2024. "Polyak Minorant Method for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2263-2282, December.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02412-7
    DOI: 10.1007/s10957-024-02412-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02412-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02412-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wanyou Cheng & Donghui Li, 2012. "An Active Set Modified Polak–Ribiére–Polyak Method for Large-Scale Nonlinear Bound Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1084-1094, December.
    2. Damek Davis & Dmitriy Drusvyatskiy & Kellie J. MacPhee & Courtney Paquette, 2018. "Subgradient Methods for Sharp Weakly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 962-982, December.
    3. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    4. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, July.
    5. R. E. Marsten & W. W. Hogan & J. W. Blankenship, 1975. "The B oxstep Method for Large-Scale Optimization," Operations Research, INFORMS, vol. 23(3), pages 389-405, June.
    6. Lemaréchal, C. & Nemirovskii, A. & Nesterov, Y., 1995. "New variants of bundle methods," LIDAM Reprints CORE 1166, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Guanghui Lan & Zhiqiang Zhou, 2020. "Algorithms for stochastic optimization with function or expectation constraints," Computational Optimization and Applications, Springer, vol. 76(2), pages 461-498, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Göke, Leonard & Schmidt, Felix & Kendziorski, Mario, 2024. "Stabilized Benders decomposition for energy planning under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 316(1), pages 183-199.
    2. A. Pessoa & R. Sadykov & E. Uchoa & F. Vanderbeck, 2018. "Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 339-360, May.
    3. Kamiar Asgari & Michael J. Neely, 2024. "Nonsmooth projection-free optimization with functional constraints," Computational Optimization and Applications, Springer, vol. 89(3), pages 927-975, December.
    4. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    5. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    6. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    7. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    8. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    9. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    10. Egor Gladin & Alexander Gasnikov & Pavel Dvurechensky, 2025. "Accuracy Certificates for Convex Minimization with Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-23, January.
    11. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    12. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    13. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    14. Šárka Štádlerová & Sanjay Dominik Jena & Peter Schütz, 2023. "Using Lagrangian relaxation to locate hydrogen production facilities under uncertain demand: a case study from Norway," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    15. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    16. Yunmei Chen & Xiaojing Ye & Wei Zhang, 2020. "Acceleration techniques for level bundle methods in weakly smooth convex constrained optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 411-432, November.
    17. Daniel Baena & Jordi Castro & Antonio Frangioni, 2020. "Stabilized Benders Methods for Large-Scale Combinatorial Optimization, with Application to Data Privacy," Management Science, INFORMS, vol. 66(7), pages 3051-3068, July.
    18. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    19. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    20. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02412-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.