IDEAS home Printed from https://ideas.repec.org/r/ces/ceswps/_875.html
   My bibliography  Save this item

How Costly is it to Ignore Breaks when Forecasting the Direction of a Time Series?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lahiri, Kajal & Yao, Vincent Wenxiong, 2006. "Economic indicators for the US transportation sector," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 872-887, December.
  2. Norman Swanson & Nii Ayi Armah, 2006. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 200619, Rutgers University, Department of Economics.
  3. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
  4. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
  5. Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
  6. Joseph P. Byrne & Roger Perman, 2006. "Unit Roots and Structural Breaks: A Survey of the Literature," Working Papers 2006_10, Business School - Economics, University of Glasgow.
  7. Jorah Ramlan & Elsadig Musa Ahmed, 2009. "Information and Communication Technology (ICT) and human capital management trend in Malaysia's economic development," Applied Economics Letters, Taylor & Francis Journals, vol. 16(18), pages 1881-1886.
  8. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
  9. Tsuchiya, Yoichi, 2013. "Are government and IMF forecasts useful? An application of a new market-timing test," Economics Letters, Elsevier, vol. 118(1), pages 118-120.
  10. Luca Nocciola, 2022. "Finite Sample Forecast Properties and Window Length Under Breaks in Cointegrated Systems," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 167-196, Emerald Group Publishing Limited.
  11. Caterina Forti Grazzini & Massimo Guidolin, 2013. "Forecasting yield spreads under crisis-induced multiple breakpoints," Applied Economics Letters, Taylor & Francis Journals, vol. 20(18), pages 1656-1664, December.
  12. Lee, Junsoo & List, John A. & Strazicich, Mark C., 2006. "Non-renewable resource prices: Deterministic or stochastic trends?," Journal of Environmental Economics and Management, Elsevier, vol. 51(3), pages 354-370, May.
  13. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
  14. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
  15. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
  16. Ming-Chih Lee & Chien-Liang Chiu & Wan-Hsiu Cheng, 2007. "Enhancing Forecast Accuracy By Using Long Estimation Periods," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 1(2), pages 1-9.
  17. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
  18. Young Bin Ahn & Yoichi Tsuchiya, 2016. "Directional analysis of consumers’ forecasts of inflation in a small open economy: evidence from South Korea," Applied Economics, Taylor & Francis Journals, vol. 48(10), pages 854-864, February.
  19. Gil-Alana, Luis A. & Chang, Shinhye & Balcilar, Mehmet & Aye, Goodness C. & Gupta, Rangan, 2015. "Persistence of precious metal prices: A fractional integration approach with structural breaks," Resources Policy, Elsevier, vol. 44(C), pages 57-64.
  20. Cró, Susana & Martins, António Miguel, 2017. "Structural breaks in international tourism demand: Are they caused by crises or disasters?," Tourism Management, Elsevier, vol. 63(C), pages 3-9.
  21. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
  22. Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
  23. Rasika Yatigammana & Shelton Peiris & Richard Gerlach & David Edmund Allen, 2018. "Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants," Risks, MDPI, vol. 6(2), pages 1-22, May.
  24. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Discussion Paper 2010-84, Tilburg University, Center for Economic Research.
  25. Gutierrez, Luciano & Erickson, Kenneth W. & Westerlund, Joakim, 2005. "The Present Value Model, Farmland Prices and Structural Breaks," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24702, European Association of Agricultural Economists.
  26. Tsuchiya, Yoichi, 2016. "Directional analysis of fiscal sustainability: Revisiting Domar's debt sustainability condition," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 189-201.
  27. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
  28. Tara Sinclair & H. O. Stekler & L. Kitzinger, 2010. "Directional forecasts of GDP and inflation: a joint evaluation with an application to Federal Reserve predictions," Applied Economics, Taylor & Francis Journals, vol. 42(18), pages 2289-2297.
  29. Hsu, Shu-Han & Cheng, Po-Keng & Yang, Yiwen, 2024. "Diversification, hedging, and safe-haven characteristics of cryptocurrencies: A structural change approach," International Review of Financial Analysis, Elsevier, vol. 93(C).
  30. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
  31. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  32. Ariel M. Viale & Jeff Madura, 2014. "Learning Banks' Exposure To Systematic Risk: Evidence From The Financial Crisis Of 2008," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 37(1), pages 75-98, February.
  33. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
  34. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
  35. Lazzarini, S. G. & Madalozzo, R. C & Artes, R. & Siqueira, J. O., 2004. "Measuring trust: An experiment in Brazil," Insper Working Papers wpe_42, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
  36. Hyein Shim & Hyeyoen Kim & Sunghyun Kim & Doojin Ryu, 2016. "Testing the relative purchasing power parity hypothesis: the case of Korea," Applied Economics, Taylor & Francis Journals, vol. 48(25), pages 2383-2395, May.
  37. Anatolyev, Stanislav, 2009. "Nonparametric Retrospection and Monitoring of Predictability of Financial Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 149-160.
  38. Giammarino, Flavia & Barrieu, Pauline, 2009. "A semiparametric model for the systematic factors of portfolio credit risk premia," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 655-670, September.
  39. Y. Tsuchiya, 2014. "A directional evaluation of corporate executives' exchange rate forecasts," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 95-101, January.
  40. Mardi Dungey & Jan P.A.M. Jacobs & Jing Tian, 2017. "Forecasting output gaps in the G-7 countries: the role of correlated innovations and structural breaks," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4554-4566, September.
  41. Yoichi Tsuchiya, 2012. "Is the Purchasing Managers' Index useful for assessing the economy's strength? A directional analysis," Economics Bulletin, AccessEcon, vol. 32(2), pages 1302-1311.
  42. Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
  43. Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
  44. Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
  45. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
  46. Manh Cuong Dong & Cathy W. S. Chen & Sangyoel Lee & Songsak Sriboonchitta, 2019. "How Strong is the Relationship Among Gold and USD Exchange Rates? Analytics Based on Structural Change Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 343-366, January.
  47. Wael K. Hanna & Nouran M. Radwan, 2021. "Day-Level Forecasting for Coronavirus Disease (COVID-19)," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-16, October.
  48. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
  49. Yang Yang & Tae-Hwy Lee, 2004. "Bagging Binary Predictors for Time Series," Econometric Society 2004 Far Eastern Meetings 512, Econometric Society.
  50. repec:hum:wpaper:sfb649dp2008-002 is not listed on IDEAS
  51. repec:ebl:ecbull:v:30:y:2010:i:1:p:292-302 is not listed on IDEAS
  52. Gregory E. Givens & Robert R. Reed, 2018. "Monetary Policy and Investment Dynamics: Evidence from Disaggregate Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1851-1878, December.
  53. Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
  54. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
  55. Ma, Feng & Wu, Hanlin & Zeng, Qing, 2024. "Biodiversity and stock returns," International Review of Financial Analysis, Elsevier, vol. 95(PA).
  56. Valentin Patilea & Hamdi Raïssi, 2014. "Testing Second-Order Dynamics for Autoregressive Processes in Presence of Time-Varying Variance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1099-1111, September.
  57. Hamid Baghestani, 2010. "Predicting the direction of change in aggregate demand growth and its components," Economics Bulletin, AccessEcon, vol. 30(1), pages 292-302.
  58. Quentin Giai Gianetto & Hamdi Raïssi, 2015. "Testing Instantaneous Causality in Presence of Nonconstant Unconditional Covariance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 46-53, January.
  59. David Ubilava, 2018. "The Role of El Niño Southern Oscillation in Commodity Price Movement and Predictability," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 239-263.
  60. Tiago E. Pratas & Filipe R. Ramos & Lihki Rubio, 2023. "Forecasting bitcoin volatility: exploring the potential of deep learning," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(2), pages 285-305, June.
  61. Mehmet Balcilar & Zeynel Abidin Ozdemir, 2018. "The volatility effect on precious metals prices in a stochastic volatility in mean model with time-varying parameters," Working Papers 15-34, Eastern Mediterranean University, Department of Economics.
  62. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, New Economic School (NES).
  63. Pilar Gargallo & Jesus Miguel & Pilar Olave & Manuel Salvador, 2010. "Evaluating value at risk using selection criteria of the model and the information set," Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1415-1428.
  64. Ana Beatriz C. Galvao, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487.
  65. Kajal Lahiri, Wenxiong Yao, and Peg Young, 2003. "Cycles in the Transportation Sector and the Aggregate Economy," Discussion Papers 03-14, University at Albany, SUNY, Department of Economics.
  66. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
  67. El-Shazly, Alaa, 2016. "Structural breaks and monetary dynamics: A time series analysis," Economic Modelling, Elsevier, vol. 53(C), pages 133-143.
  68. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
  69. Liew, Freddy, 2012. "Forecasting inflation in Asian economies," MPRA Paper 36781, University Library of Munich, Germany.
  70. Cathy W. S. Chen & Bonny Lee, 2021. "Bayesian inference of multiple structural change models with asymmetric GARCH errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1053-1078, September.
  71. Czinkota, Thomas, 2012. "Das Halteproblem bei Strukturbrüchen in Finanzmarktzeitreihen [The Halting Problem applied to Structural Breaks in Financial Time Series]," MPRA Paper 37072, University Library of Munich, Germany.
  72. Ana Beatriz C. Galvão, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487, May.
  73. Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
  74. Cizek, P. & Haerdle, W. & Spokoiny, V., 2007. "Adaptive Pointwise Estimation in Time-Inhomogeneous Time-Series Models," Other publications TiSEM a797e4a8-12cf-4ac5-9fae-b, Tilburg University, School of Economics and Management.
  75. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
  76. Xu, Bin, 2023. "Exploring the sustainable growth pathway of wind power in China: Using the semiparametric regression model," Energy Policy, Elsevier, vol. 183(C).
  77. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
  78. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
  79. Luis A. Gil-Alana & Goodness C. Aye & Rangan Gupta, 2012. "Testing for Persistence with Breaks and Outliers in South African House Prices," Working Papers 201233, University of Pretoria, Department of Economics.
  80. Ullrich Heilemann & Herman Stekler, 2010. "Perspectives on Evaluating Macroeconomic Forecasts," Working Papers 2010-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
  81. Kanas, Angelos & Kouretas, Georgios P., 2005. "A cointegration approach to the lead-lag effect among size-sorted equity portfolios," International Review of Economics & Finance, Elsevier, vol. 14(2), pages 181-201.
  82. Tsuchiya, Yoichi, 2014. "Purchasing and supply managers provide early clues on the direction of the US economy: An application of a new market-timing test," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 599-618.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.