IDEAS home Printed from https://ideas.repec.org/r/cdl/itsdav/qt2k09h787.html
   My bibliography  Save this item

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Collantes, Gustavo & Melaina, Marc W., 2011. "The co-evolution of alternative fuel infrastructure and vehicles: A study of the experience of Argentina with compressed natural gas," Energy Policy, Elsevier, vol. 39(2), pages 664-675, February.
  2. Peterson, Meghan B. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2014. "A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050," Applied Energy, Elsevier, vol. 125(C), pages 206-217.
  3. Brito, Thiago Luis Felipe & Moutinho dos Santos, Edmilson & Galbieri, Rodrigo & Costa, Hirdan Katarina de Medeiros, 2017. "Qualitative Comparative Analysis of cities that introduced compressed natural gas to their urban bus fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 502-508.
  4. Nithin Isaac & Akshay Kumar Saha, 2022. "Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling," Energies, MDPI, vol. 15(18), pages 1-18, September.
  5. Vásquez Cordano, Arturo Leonardo & Rojas, Pedro & Aurazo, José, 2021. "Pricing Coordination in a Spatial Context: Evidence from the Retail Vehicular Natural Gas Market of Peru," Documentos de Trabajo 006, Escuela de Postgrado GERENS.
  6. Kelley, Scott & Kuby, Michael, 2013. "On the way or around the corner? Observed refueling choices of alternative-fuel drivers in Southern California," Journal of Transport Geography, Elsevier, vol. 33(C), pages 258-267.
  7. Ravigné, E. & Da Costa, P., 2021. "Economic and environmental performances of natural gas for heavy trucks: A case study on the French automotive industry supply chain," Energy Policy, Elsevier, vol. 149(C).
  8. Chang, Wei-Ru & Hwang, Jenn-Jiang & Wu, Wei, 2017. "Environmental impact and sustainability study on biofuels for transportation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 277-288.
  9. Ogunlowo, Olufemi O. & Bristow, Abigail L. & Sohail, M., 2015. "Developing compressed natural gas as an automotive fuel in Nigeria: Lessons from international markets," Energy Policy, Elsevier, vol. 76(C), pages 7-17.
  10. Matheus Diógenes Andrade & Fábio Luiz Usberti, 2023. "A theoretical and computational study of green vehicle routing problems," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-56, July.
  11. Ogunlowo, Olufemi O. & Bristow, Abigail L. & Sohail, M., 2017. "A stakeholder analysis of the automotive industry's use of compressed natural gas in Nigeria," Transport Policy, Elsevier, vol. 53(C), pages 58-69.
  12. Askin, Amanda C. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2015. "The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs," Energy Policy, Elsevier, vol. 81(C), pages 1-13.
  13. Rodrigues Teixeira, Ana Carolina & Machado, Pedro Gerber & Borges, Raquel Rocha & Felipe Brito, Thiago Luis & Moutinho dos Santos, Edmilson & Mouette, Dominique, 2021. "The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver's point of view," Energy Policy, Elsevier, vol. 149(C).
  14. Chen, Zheng & Zhang, Fan & Xu, Boya & Zhang, Quanchang & Liu, Jingping, 2017. "Influence of methane content on a LNG heavy-duty engine with high compression ratio," Energy, Elsevier, vol. 128(C), pages 329-336.
  15. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
  16. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
  17. Rodrigo Galbieri & Thiago Luis Felipe Brito & Dominique Mouette & Hirdan Katarina Medeiros Costa & Edmilson Moutinho dos Santos & Murilo Tadeu Werneck Fagá, 2018. "Bus fleet emissions: new strategies for mitigation by adopting natural gas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1039-1062, October.
  18. Charles Kagiri & Lijun Zhang & Xiaohua Xia, 2019. "A Hierarchical Optimisation of a Compressed Natural Gas Station for Energy and Fuelling Efficiency under a Demand Response Program," Energies, MDPI, vol. 12(11), pages 1-24, June.
  19. Adrián Saldarriaga-Isaza, C. & Vergara, Carlos, 2009. "Who switches to hybrids? A study of a fuel conversion program in Colombia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 572-579, June.
  20. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
  21. Gross, Robert & Hanna, Richard & Gambhir, Ajay & Heptonstall, Philip & Speirs, Jamie, 2018. "How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technolo," Energy Policy, Elsevier, vol. 123(C), pages 682-699.
  22. Bhatia, Vinod & Sharma, Seema, 2024. "Trends and policy analysis: A case for sustainable transport systems in India," Transport Policy, Elsevier, vol. 153(C), pages 76-86.
  23. Imran Khan, Muhammad, 2017. "Policy options for the sustainable development of natural gas as transportation fuel," Energy Policy, Elsevier, vol. 110(C), pages 126-136.
  24. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
  25. Markéta Mikolajková-Alifov & Frank Pettersson & Margareta Björklund-Sänkiaho & Henrik Saxén, 2019. "A Model of Optimal Gas Supply to a Set of Distributed Consumers," Energies, MDPI, vol. 12(3), pages 1-27, January.
  26. Saima Abdul Jabbar & Laila Tul Qadar & Sulaman Ghafoor & Lubna Rasheed & Zouina Sarfraz & Azza Sarfraz & Muzna Sarfraz & Miguel Felix & Ivan Cherrez-Ojeda, 2022. "Air Quality, Pollution and Sustainability Trends in South Asia: A Population-Based Study," IJERPH, MDPI, vol. 19(12), pages 1-16, June.
  27. Wiedmann, Klaus-Peter & Hennigs, Nadine & Pankalla, Lars & Kassubek, Martin & Seegebarth, Barbara, 2011. "Adoption barriers and resistance to sustainable solutions in the automotive sector," Journal of Business Research, Elsevier, vol. 64(11), pages 1201-1206.
  28. Brozynski, Max T. & Leibowicz, Benjamin D., 2022. "A multi-level optimization model of infrastructure-dependent technology adoption: Overcoming the chicken-and-egg problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 755-770.
  29. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
  30. Waller, Michael G. & Williams, Eric D. & Matteson, Schuyler W. & Trabold, Thomas A., 2014. "Current and theoretical maximum well-to-wheels exergy efficiency of options to power vehicles with natural gas," Applied Energy, Elsevier, vol. 127(C), pages 55-63.
  31. Barter, Garrett E. & Reichmuth, David & Westbrook, Jessica & Malczynski, Leonard A. & West, Todd H. & Manley, Dawn K. & Guzman, Katherine D. & Edwards, Donna M., 2012. "Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles," Energy Policy, Elsevier, vol. 46(C), pages 473-488.
  32. Chunguang Bai & Behnam Fahimnia & Joseph Sarkis, 2017. "Sustainable transport fleet appraisal using a hybrid multi-objective decision making approach," Annals of Operations Research, Springer, vol. 250(2), pages 309-340, March.
  33. Yanfei Li & Robert Kochhan, 2017. "Policies And Business Models For The Electric Mobility Revolution: The Case Study On Singapore," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 62(05), pages 1195-1222, December.
  34. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
  35. Engerer, Hella & Horn, Manfred, 2010. "Natural gas vehicles: An option for Europe," Energy Policy, Elsevier, vol. 38(2), pages 1017-1029, February.
  36. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
  37. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  38. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
  39. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
  40. Muhammad Mohsin & Hengbin Yin & Weilun Huang & Shijun Zhang & Luyao Zhang & Ana Mehak, 2022. "Evaluation of Occupational Health Risk Management and Performance in China: A Case Study of Gas Station Workers," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
  41. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
  42. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
  43. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
  44. Liang, Yong-Liang & Guo, Chen-Xian & Li, Ke-Jun & Li, Ming-Yang, 2021. "Economic scheduling of compressed natural gas main station considering critical peak pricing," Applied Energy, Elsevier, vol. 292(C).
  45. Ishengoma, Esther K. & Gabriel, Genoveva, 2021. "Factors influencing the payment of costs of converting oil-to CNG-fuelled cars in a market dominated by used-cars," Energy Policy, Elsevier, vol. 156(C).
  46. Larizzatti Zacharias, Luis Guilherme & Antunes Costa de Andrade, Ana Clara & Guichet, Xavier & Mouette, Dominique & Peyerl, Drielli, 2022. "Natural gas as a vehicular fuel in Brazil: Barriers and lessons to learn," Energy Policy, Elsevier, vol. 167(C).
  47. Jose J. Soto & Victor Cantillo & Julian Arellana, 2018. "Incentivizing alternative fuel vehicles: the influence of transport policies, attitudes and perceptions," Transportation, Springer, vol. 45(6), pages 1721-1753, November.
  48. Ackah, Ishmael & TETTEH, ELIZABETH NARKIE, 2016. "Determinants of autogas demand among Taxi Drivers in rural Ghana," MPRA Paper 74242, University Library of Munich, Germany.
  49. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
  50. Gnann, Till & Plötz, Patrick, 2015. "A review of combined models for market diffusion of alternative fuel vehicles and their refueling infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 783-793.
  51. Thamsiriroj, T. & Smyth, H. & Murphy, J.D., 2011. "A roadmap for the introduction of gaseous transport fuel: A case study for renewable natural gas in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4642-4651.
  52. Wang-Helmreich, Hanna & Lochner, Stefan, 2011. "Natural Gas in Road Transportation - A Low-emission Bridging Technology?," EWI Working Papers 2011-14, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  53. Mallapragada, Dharik S. & Duan, Gang & Agrawal, Rakesh, 2014. "From shale gas to renewable energy based transportation solutions," Energy Policy, Elsevier, vol. 67(C), pages 499-507.
  54. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
  55. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
  56. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.
  57. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.
  58. Arteconi, A. & Polonara, F., 2013. "LNG as vehicle fuel and the problem of supply: The Italian case study," Energy Policy, Elsevier, vol. 62(C), pages 503-512.
  59. Mathews, John A. & Goldsztein, Hugo, 2009. "Capturing latecomer advantages in the adoption of biofuels: The case of Argentina," Energy Policy, Elsevier, vol. 37(1), pages 326-337, January.
  60. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
  61. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.
  62. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
  63. Dorina Pojani & Dominic Stead, 2015. "Sustainable Urban Transport in the Developing World: Beyond Megacities," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
  64. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
  65. Melaina, Marc & Bremson, Joel, 2008. "Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage," Energy Policy, Elsevier, vol. 36(8), pages 3223-3231, August.
  66. Kamila Janovská & Iveta Vozòáková & Petr Besta & Marek Šafránek, 2021. "Ecological and economic multicriteria optimization of operating alternative propulsion vehicles within the city of Ostrava in the Czech Republic," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 907-943, December.
  67. Brito, T.L.F. & Galvão, C. & Fonseca, A.F. & Costa, H.K.M. & Moutinho dos Santos, E., 2022. "A review of gas-to-wire (GtW) projects worldwide: State-of-art and developments," Energy Policy, Elsevier, vol. 163(C).
  68. Gao, Jiayang & Zhang, Tao, 2022. "Effects of public funding on the commercial diffusion of on-site hydrogen production technology: A system dynamics perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  69. Saptarshi Das & Ashok Sekar & Roger Chen & Hyung Chul Kim & Timothy J. Wallington & Eric Williams, 2017. "Impacts of Autonomous Vehicles on Consumers Time-Use Patterns," Challenges, MDPI, vol. 8(2), pages 1-15, December.
  70. Melaina, Marc W & Bremson, Joel, 2008. "Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage," Institute of Transportation Studies, Working Paper Series qt8ng1g4rf, Institute of Transportation Studies, UC Davis.
  71. Guerrero de la Peña, Ana & Davendralingam, Navindran & Raz, Ali K. & DeLaurentis, Daniel & Shaver, Gregory & Sujan, Vivek & Jain, Neera, 2019. "Projecting line-haul truck technology adoption: How heterogeneity among fleets impacts system-wide adoption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 108-127.
  72. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
  73. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.